Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(46): 17020-17027, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37923567

ABSTRACT

In drug research and development, knowledge of the precise structure of an active ingredient is crucial. However, it is equally important to know the water content of the drug molecule, particularly the number of crystal waters present in its structure. Such knowledge ensures the avoidance of drug dosage and formulation errors since the number of water molecules affects the physicochemical and pharmaceutical properties of the molecule. Several methods have been used for crystal water measurements of organic compounds, of which thermogravimetry and crystallography may be the most common ones. To the best of our knowledge, solution-state NMR spectroscopy has not been used for crystal water determination in deuterium oxide. Quantitative NMR (qNMR) method will be presented in the paper with a comparison of single-crystal X-ray diffraction and thermogravimetric analysis results. The qNMR method for water content measurement is straightforward, reproducible, and accurate, including measurement of 1H NMR spectrum before and after the addition of the analyte compound, and the result can be calculated after integration of the reference compound, analyte, and HDO signals using the given equation. In practical terms, there is no need for weighing the samples under study, which makes it simple and is a clear advantage to the current determination methods. In addition, the crystal structures of two model bisphosphonates used herein are reported: that of monopotassium etidronate dihydrate and monosodium zoledronate trihydrate.

2.
Anal Chem ; 94(34): 11739-11744, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35972396

ABSTRACT

Strict regulations are in place to control the effluents of mining sites and other industries. Heavy metal contamination of aquatic systems caused by leakages is difficult to mitigate as it takes time to detect and localize the leak. Dynamic sampling would drastically reduce the time to locate leakages and allow faster actions to reduce the impact on the environment. The present study introduces a novel portable multielement water analysis system to simultaneously measure Mn, Ni, Cu, Zn, Pb, and U in water samples from natural sources within 15 min from the sampling. The metals are preconcentrated from a 10 mL water sample into a nanoporous filter based on bisphosphonate-modified thermally carbonized porous silicon. The metals can be conveniently analyzed from the filter with a portable XRF analyzer in field conditions. The system was empirically calibrated for a lake water matrix with neutral pH and low alkaline metal concentration. A strong correlation between the XRF intensities and the ICP-MS results was obtained in a concentration range from 50 to 10 000 µg/L. With a DPO-2000C XRF analyzer, the detection limits were 103, 86, 92, 35, 44, and 43 µg/L for Mn, Ni, Cu, Zn, Pb, and U, respectively. The corresponding values with X-MET8000 Expert Geo were 137, 46, 62, 38, 29, and 54. The system was successfully validated with simulated multielement lake water samples and piloted in field conditions. The system provides an efficient way to monitor metals in environmental waters in cases where quick on-site results are needed.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring/methods , Fluorescence , Lead/analysis , Metals, Heavy/analysis , Water/analysis , Water Pollutants, Chemical/analysis , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...