Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
IBRO Neurosci Rep ; 14: 64-76, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36593897

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Because Alzheimer's disease has no known treatment, sufferers and their caregivers must concentrate on symptom management. Astrocytes and microglia are now known to play distinct physiological roles in synaptic function, the blood-brain barrier, and neurovascular coupling. Consequently, the search for drugs that can slow the degenerative process in dementia sufferers continues because existing drugs are designed to alleviate the symptoms of Alzheimer's disease. Drugs that address pathological changes without interfering with the normal function of glia, such as eliminating amyloid-beta deposits, are prospective treatments for neuroinflammatory illnesses. Because neuron-astrocytes-microglia interactions are so complex, developing effective, preventive, and therapeutic medications for AD will necessitate novel methodologies and strategic targets. This review focused on existing medications used in treating AD amongst which include Donepezil, Choline Alphoscerate, Galantamine, Dextromethorphan, palmitoylethanolamide, citalopram, resveratrol, and solanezumab. This review summarizes the effects of these drugs on neurons, astrocytes, and microglia interactions based on their pharmacokinetic properties, mechanism of action, dosing, and clinical presentations.

2.
Anatomy & Cell Biology ; : 41-51, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-713350

ABSTRACT

In the developed and developing world, opioid consumption in combination with alcohol has become one of the substances abused. In this experiment, we examined the effects of alcohol, morphine, and morphine+alcohol combination on cognitive functions and neuroinflammatory responses in the medial prefrontal cortex (mPFC) of juvenile male rats. Alcohol (1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart), morphine (0.5 ml/kg of 0.4 mg/kg morphine chlorate twice daily, subcutaneously, 7 hours apart), morphine+alcohol co-treatment (0.5 ml/kg of 0.4 mg/kg morphine chlorate+1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart) were administered for 21 days. Treatment with morphine+alcohol significantly impairs cognition functions in the Morris water maze, passive avoidance, and novel object recognition tests, furthermore, the treatment significantly increased the quantitative count of astrocytic cells and also conferred marked neuronal cell death in the mPFC, which were studied by glial fibrillary acidic protein immunochemistry for astrocytes and Cresyl violet for Nissl's substance distribution in neurons respectively. These results suggest that alcohol, morphine, and morphine+alcohol co-treatment may trigger cognitive deficits and neuroinflammatory responses in the brain.


Subject(s)
Animals , Humans , Male , Rats , Alcohols , Astrocytes , Brain , Cell Death , Cognition Disorders , Cognition , Ethanol , Glial Fibrillary Acidic Protein , Immunochemistry , Morphine , Neurons , Prefrontal Cortex , Viola , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...