Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10921, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035367

ABSTRACT

The effects of temperature on corrosion resistance of Silver-Cobalt oxide and Titanium Dioxide (Ag/Co3O4/TiO2) nanocomposite coated AISI 1020 in a high-temperature environment was investigated. The Ag, Co3O4 and TiO2 nanoparticles were individually produced by mixing the salt precursors with extract of Piptadeniastrum Africana leaf under the optimized synthesis conditions. The nanocomposite was produced by mixing Ag, Co3O4 and TiO2 nanoparticles (NPs) in equal proportions to constitute 75 wt% of the composite. 10 wt% epoxy resin and its hardener in the ratio (1:1) were added to serve as the binder, while 15 wt% of CNT was introduced to serve as support. The produced Ag/Co3O4/TiO2 nanocomposite was coated on the surface of mild steel (AISI 1020) by the dipping method. The coated samples were heated in a muffle furnace to 35, 100, 200, and 300 °C. Microstructural evolution of the coatings was investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometer. The corrosion resistance of the coated and heated and un-heated steel samples was determined using the potentiodynamic polarization method. The results show that Ag/Co3O4/TiO2 nanocomposite coated sample cured at 100 °C exhibited the highest corrosion resistance of 195.12 Ω.

2.
Article in English | MEDLINE | ID: mdl-33578670

ABSTRACT

Persistent pharmaceutical pollutants (PPPs) have been identified as potential endocrine disruptors that mimic growth hormones when consumed at nanogram per litre to microgram per litre concentrations. Their occurrence in potable water remains a great threat to human health. Different conventional technologies developed for their removal from wastewater have failed to achieve complete mineralisation. Advanced oxidation technologies such as dielectric barrier discharges (DBDs) based on free radical mechanisms have been identified to completely decompose PPPs. Due to the existence of pharmaceuticals as mixtures in wastewater and the recalcitrance of their degradation intermediate by-products, no single advanced oxidation technology has been able to eliminate pharmaceutical xenobiotics. This review paper provides an update on the sources, occurrence, and types of pharmaceuticals in wastewater by emphasising different DBD configurations previously and currently utilised for pharmaceuticals degradation under different experimental conditions. The performance of the DBD geometries was evaluated considering various factors including treatment time, initial concentration, half-life time, degradation efficiency and the energy yield (G50) required to degrade half of the pollutant concentration. The review showed that the efficacy of the DBD systems on the removal of pharmaceutical compounds depends not only on these parameters but also on the nature/type of the pollutant.


Subject(s)
Endocrine Disruptors , Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Endocrine Disruptors/analysis , Humans , Wastewater , Water , Water Pollutants, Chemical/analysis
3.
Environ Monit Assess ; 188(8): 471, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27418078

ABSTRACT

Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.


Subject(s)
Environmental Monitoring/methods , Industrial Waste/analysis , Textile Industry , Wastewater/toxicity , Water Purification/methods , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/immunology , Enzyme-Linked Immunosorbent Assay , Flocculation , Interleukin-6/immunology , Mice , Nitric Oxide/immunology , Wastewater/analysis
4.
Environ Sci Pollut Res Int ; 22(23): 18345-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26493299

ABSTRACT

The growing global drinking water crisis requires the development of novel advanced, sustainable, and cost-effective water treatment technologies to supplement the existing conventional methods. One such technology is advanced oxidation based on dielectric barrier discharge (DBD). DBD such as single and double planar and single and double cylindrical dielectric barrier configurations have been utilized for efficient degradation of recalcitrant organic pollutants. The overall performance of the different DBD system varies and depends on several factors. Therefore, this review was compiled to give an overview of different DBD configurations vis-a-viz their applications and the in situ mechanism of generation of free reactive species for water and wastewater treatment. Our survey of the literature indicated that application of double cylindrical dielectric barrier configuration represents an ideal and viable route for achieving greater water and wastewater purification efficiency.


Subject(s)
Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...