Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cells ; 12(8)2023 04 20.
Article in English | MEDLINE | ID: mdl-37190104

ABSTRACT

A t(9;11)(p22;q23) translocation produces the MLL-AF9 fusion protein, which is found in up to 25% of de novo AML cases in children. Despite major advances, obtaining a comprehensive understanding of context-dependent MLL-AF9-mediated gene programs during early hematopoiesis is challenging. Here, we generated a human inducible pluripotent stem cell (hiPSC) model with a doxycycline dose-dependent MLL-AF9 expression. We exploited MLL-AF9 expression as an oncogenic hit to uncover epigenetic and transcriptomic effects on iPSC-derived hematopoietic development and the transformation into (pre-)leukemic states. In doing so, we observed a disruption in early myelomonocytic development. Accordingly, we identified gene profiles that were consistent with primary MLL-AF9 AML and uncovered high-confidence MLL-AF9-associated core genes that are faithfully represented in primary MLL-AF9 AML, including known and presently unknown factors. Using single-cell RNA-sequencing, we identified an increase of CD34 expressing early hematopoietic progenitor-like cell states as well as granulocyte-monocyte progenitor-like cells upon MLL-AF9 activation. Our system allows for careful chemically controlled and stepwise in vitro hiPSC-derived differentiation under serum-free and feeder-free conditions. For a disease that currently lacks effective precision medicine, our system provides a novel entry-point into exploring potential novel targets for personalized therapeutic strategies.


Subject(s)
Leukemia, Myeloid, Acute , Pluripotent Stem Cells , Child , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Cell Differentiation/genetics , Monocytes/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Pluripotent Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
2.
PLoS One ; 14(12): e0226435, 2019.
Article in English | MEDLINE | ID: mdl-31869378

ABSTRACT

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect normal hematopoiesis. The analysis of human AMLs has mostly been performed using end-point materials, such as cell lines and patient derived AMLs that also carry additional contributing mutations. The molecular effects of a single oncogenic hit, such as expression of the AML associated oncoprotein AML1-ETO on hematopoietic development and transformation into a (pre-) leukemic state still needs further investigation. Here we describe the development and characterization of an induced pluripotent stem cell (iPSC) system that allows in vitro differentiation towards different mature myeloid cell types such as monocytes and granulocytes. During in vitro differentiation we expressed the AML1-ETO fusion protein and examined the effects of the oncoprotein on differentiation and the underlying alterations in the gene program at 8 different time points. Our analysis revealed that AML1-ETO as a single oncogenic hit in a non-mutated background blocks granulocytic differentiation, deregulates the gene program via altering the acetylome of the differentiating granulocytic cells, and induces t(8;21) AML associated leukemic characteristics. Together, these results reveal that inducible oncogene expression during in vitro differentiation of iPS cells provides a valuable platform for analysis of aberrant regulation in disease.


Subject(s)
Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Core Binding Factor Alpha 2 Subunit/physiology , Granulocytes/physiology , Induced Pluripotent Stem Cells/physiology , Oncogene Proteins, Fusion/physiology , RUNX1 Translocation Partner 1 Protein/physiology , Transcriptome , Cell Proliferation/genetics , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/genetics , Granulocytes/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukopoiesis/genetics , Monocytes/physiology , Myelopoiesis/genetics , Oncogene Proteins, Fusion/genetics , Oncogenes/physiology , RUNX1 Translocation Partner 1 Protein/genetics , Transcriptome/genetics , Transfection
3.
Blood Cancer J ; 9(3): 33, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850577

ABSTRACT

The inv(16) acute myeloid leukemia-associated CBFß-MYH11 fusion is proposed to block normal myeloid differentiation, but whether this subtype of leukemia cells is poised for a unique cell lineage remains unclear. Here, we surveyed the functional consequences of CBFß-MYH11 in primary inv(16) patient blasts, upon expression during hematopoietic differentiation in vitro and upon knockdown in cell lines by multi-omics profiling. Our results reveal that primary inv(16) AML cells share common transcriptomic signatures and epigenetic determiners with megakaryocytes and erythrocytes. Using in vitro differentiation systems, we reveal that CBFß-MYH11 knockdown interferes with normal megakaryocyte maturation. Two pivotal regulators, GATA2 and KLF1, are identified to complementally occupy RUNX1-binding sites upon fusion protein knockdown, and overexpression of GATA2 partly induces a gene program involved in megakaryocyte-directed differentiation. Together, our findings suggest that in inv(16) leukemia, the CBFß-MYH11 fusion inhibits primed megakaryopoiesis by attenuating expression of GATA2/KLF1 and interfering with a balanced transcriptional program involving these two factors.


Subject(s)
GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Leukemic , Kruppel-Like Transcription Factors/metabolism , Megakaryocytes/metabolism , Oncogene Proteins, Fusion/genetics , Binding Sites , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Epigenesis, Genetic , Erythroid Cells/cytology , Erythroid Cells/metabolism , Erythropoiesis/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Megakaryocytes/cytology , Oncogene Proteins, Fusion/metabolism , Protein Binding , Thrombopoiesis , Transcription, Genetic
4.
Blood Adv ; 3(3): 320-332, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30709863

ABSTRACT

To unravel molecular mechanisms by which Runt-related transcription factor 1 (RUNX1) mutations contribute to leukemic transformation, we introduced the RUNX1-S291fs300X mutation in human CD34+ stem/progenitor cells and in human induced pluripotent stem cells (iPSCs). In both models, RUNX1mut overexpression strongly impaired myeloid commitment. Instead, self-renewal was enhanced, as shown, by increased long-term culture-initiating cell frequencies and enhanced colony-forming cell replating capacity. Long-term suspension cultures with RUNX1mut-transduced cord blood (CB) CD34+ cells continued for more than 100 days, during which the cells displayed an immature granulocyte-macrophage progenitor-like CD34+/CD123+/CD45RA+ phenotype. The CD34+/CD38- hematopoietic stem cell (HSC) population most likely acted as cell of origin, as HSCs provided the best long-term proliferative potential on overexpression of RUNX1mut. CEBPA expression was reduced in RUNX1mut cells, and reexpression of CEBPA partly restored differentiation. RNA-seq analysis on CB/iPSC systems and on primary patient samples confirmed that RUNX1 mutations induce a myeloid differentiation block, and that a common set of RUNX1mut-upregulated target genes was strongly enriched for gene ontology terms associated with nucleosome assembly and chromatin structure. Interestingly, in comparison with AML1-ETO binding in acute myeloid leukemias (AMLs), we found significantly distinct genomic distribution and differential expression for RUNX1mut of genes such as TCF4, MEIS1, and HMGA2 that may potentially contribute to the underlying difference in clinical outcomes between RUNX1mut and AML1-ETO patients. In conclusion, RUNX1mut appears to induce a specific transcriptional program that contributes to leukemic transformation.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Granulocytes/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , CCAAT-Enhancer-Binding Proteins/biosynthesis , CCAAT-Enhancer-Binding Proteins/genetics , Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Chromatin Immunoprecipitation , Core Binding Factor Alpha 2 Subunit/biosynthesis , Core Binding Factor Alpha 2 Subunit/blood , Core Binding Factor Alpha 2 Subunit/metabolism , Fetal Blood/metabolism , Granulocytes/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Protein Binding
5.
Exp Hematol ; 60: 57-62.e3, 2018 04.
Article in English | MEDLINE | ID: mdl-29408281

ABSTRACT

Translocation t(12;21) (p13;q22), giving rise to the ETV6-RUNX1 fusion gene, is the most common genetic abnormality in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation usually arises in utero, but its expression is insufficient to induce leukemia and requires other cooperating genetic lesions for BCP-ALL to develop. Deletions affecting the transcriptional coregulator BTG1 are frequently observed in ETV6-RUNX1-positive leukemia. Here we report that Btg1 deficiency enhances the self-renewal capacity of ETV6-RUNX1-positive mouse fetal liver-derived hematopoietic progenitors (FL-HPCs). Combined expression of the fusion protein and a loss of BTG1 drive upregulation of the proto-oncogene Bcl6 and downregulation of BCL6 target genes, such as p19Arf and Tp53. Similarly, ectopic expression of BCL6 promotes the self-renewal and clonogenic replating capacity of FL-HPCs, by suppressing the expression of p19Arf and Tp53. Together these results identify BCL6 as a potential driver of ETV6-RUNX1-mediated leukemogenesis, which could involve loss of BTG1-dependent suppression of ETV6-RUNX1 function.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Leukemic , Leukemia/metabolism , Neoplasm Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins c-bcl-6/biosynthesis , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Core Binding Factor Alpha 2 Subunit/genetics , Cyclin-Dependent Kinase Inhibitor p16 , Leukemia/genetics , Leukemia/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Tumor Suppressor Protein p53 , Tumor Suppressor Proteins/genetics , ETS Translocation Variant 6 Protein
6.
Haematologica ; 102(3): 541-551, 2017 03.
Article in English | MEDLINE | ID: mdl-27979924

ABSTRACT

Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia (P=0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival (P=0.0003) and a higher 5-year cumulative incidence of relapse (P=0.005), when compared with IKZF1-deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1, did not affect the outcome of IKZF1-deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1-deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1+/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1+/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function.


Subject(s)
Cell Transformation, Neoplastic/genetics , Epistasis, Genetic , Ikaros Transcription Factor/genetics , Neoplasm Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Animals , Biomarkers, Tumor , Cell Transformation, Neoplastic/metabolism , Child , Child, Preschool , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Female , Gene Deletion , Genetic Predisposition to Disease , Humans , Ikaros Transcription Factor/metabolism , Male , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Patient Outcome Assessment , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Recurrence , Tumor Suppressor Proteins/metabolism
7.
Cell Rep ; 17(8): 2087-2100, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851970

ABSTRACT

The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells.


Subject(s)
Apoptosis/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoiesis/genetics , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Translocation, Genetic , Acetylation , Base Sequence , Cell Line, Tumor , Cell Lineage/genetics , Cell Survival/genetics , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Gene Knockdown Techniques , Genome, Human , Histone Deacetylases/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Oncogenes , Promoter Regions, Genetic , Protein Binding/genetics , Transcriptional Regulator ERG/metabolism
9.
Oncotarget ; 7(3): 3128-43, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26657730

ABSTRACT

Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses.


Subject(s)
Activating Transcription Factor 4/metabolism , Neoplasm Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Stress, Physiological/physiology , Animals , Apoptosis/physiology , B-Lymphocytes/cytology , Cell Line, Tumor , Fibroblasts , Humans , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
10.
PLoS One ; 10(7): e0131481, 2015.
Article in English | MEDLINE | ID: mdl-26218146

ABSTRACT

Btg1 and Btg2 encode highly homologous proteins that are broadly expressed in different cell lineages, and have been implicated in different types of cancer. Btg1 and Btg2 have been shown to modulate the function of different transcriptional regulators, including Hox and Smad transcription factors. In this study, we examined the in vivo role of the mouse Btg1 and Btg2 genes in specifying the regional identity of the axial skeleton. Therefore, we examined the phenotype of Btg1 and Btg2 single knockout mice, as well as novel generated Btg1-/-;Btg2-/- double knockout mice, which were viable, but displayed a non-mendelian inheritance and smaller litter size. We observed both unique and overlapping phenotypes reminiscent of homeotic transformation along the anterior-posterior axis in the single and combined Btg1 and Btg2 knockout animals. Both Btg1-/- and Btg2-/- mice displayed partial posterior transformation of the seventh cervical vertebra, which was more pronounced in Btg1-/-;Btg2-/- mice, demonstrating that Btg1 and Btg2 act in synergy. Loss of Btg2, but not Btg1, was sufficient for complete posterior transformation of the thirteenth thoracic vertebra to the first lumbar vertebra. Moreover, Btg2-/- animals displayed complete posterior transformation of the sixth lumbar vertebra to the first sacral vertebra, which was only partially present at a low frequency in Btg1-/- mice. The Btg1-/-;Btg2-/- animals showed an even stronger phenotype, with L5 to S1 transformation. Together, these data show that both Btg1 and Btg2 are required for normal vertebral patterning of the axial skeleton, but each gene contributes differently in specifying the identity along the anterior-posterior axis of the skeleton.


Subject(s)
Immediate-Early Proteins/metabolism , Neoplasm Proteins/metabolism , Phenotype , Spine/growth & development , Tumor Suppressor Proteins/metabolism , Animals , Immediate-Early Proteins/genetics , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Tumor Suppressor Proteins/genetics
11.
PLoS One ; 7(8): e42822, 2012.
Article in English | MEDLINE | ID: mdl-22912744

ABSTRACT

The human tumour antigen PRAME (preferentially expressed antigen in melanoma) is frequently overexpressed during oncogenesis, and high PRAME levels are associated with poor clinical outcome in a variety of cancers. However, the molecular pathways in which PRAME is implicated are not well understood. We recently characterized PRAME as a BC-box subunit of a Cullin2-based E3 ubiquitin ligase. In this study, we mined the PRAME interactome to a deeper level and identified specific interactions with OSGEP and LAGE3, which are human orthologues of the ancient EKC/KEOPS complex. By characterizing biochemically the human EKC complex and its interactions with PRAME, we show that PRAME recruits a Cul2 ubiquitin ligase to EKC. Moreover, EKC subunits associate with PRAME target sites on chromatin. Our data reveal a novel link between the oncoprotein PRAME and the conserved EKC complex and support a role for both complexes in the same pathways.


Subject(s)
Antigens, Neoplasm/metabolism , Cullin Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , HeLa Cells , Humans , K562 Cells , Protein Binding , Protein Transport
12.
EMBO J ; 30(18): 3786-98, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21822215

ABSTRACT

The human tumour antigen PRAME (preferentially expressed antigen of melanoma) is frequently overexpressed in tumours. High PRAME levels correlate with poor clinical outcome of several cancers, but the mechanisms by which PRAME could be involved in tumourigenesis remain largely elusive. We applied protein-complex purification strategies and identified PRAME as a substrate recognition subunit of a Cullin2-based E3 ubiquitin ligase. PRAME can be recruited to DNA in vitro, and genome-wide chromatin immunoprecipitation experiments revealed that PRAME is specifically enriched at transcriptionally active promoters that are also bound by NFY and at enhancers. Our results are consistent with a role for the PRAME ubiquitin ligase complex in NFY-mediated transcriptional regulation.


Subject(s)
Antigens, Neoplasm/metabolism , CCAAT-Binding Factor/metabolism , Cullin Proteins/metabolism , Promoter Regions, Genetic , Ubiquitin-Protein Ligases/metabolism , Chromatin Immunoprecipitation , Humans , Protein Binding , Protein Subunits/metabolism
13.
Blood ; 115(23): 4810-9, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20354172

ABSTRACT

Resistance to glucocorticoids (GCs) is a major clinical problem in the treatment of acute lymphoblastic leukemia (ALL), but the underlying mechanisms are not well understood. Although mutations in the glucocorticoid receptor (GR) gene can give rise to therapy resistance in vitro, acquired somatic mutations in the GR are rarely encountered in patients. Here we report that the protein encoded by the BTG1 gene, which is frequently deleted in (pediatric) ALL, is a key determinant of GC responsiveness. Using RNA interference, we show that loss of BTG1 expression causes GC resistance both by decimating GR expression and by controlling GR-mediated transcription. Conversely, reexpression of BTG1 restores GC sensitivity by potentiating GC-induced GR expression, a phenomenon known as GR autoinduction. In addition, the arginine methyltransferase PRMT1, a BTG1-binding partner and transcriptional coactivator, is recruited to the GR gene promoter in a BTG1-dependent manner. These results implicate the BTG1/PRMT1 complex in GR-mediated gene expression and reveal that deregulation of a nuclear receptor coactivator complex can give rise to GC resistance. Further characterization of this complex as part of the GR regulatory circuitry could offer novel opportunities for improving the efficacy of GC-based therapies in ALL and other hematologic malignancies.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Leukemic , Neoplasm Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Glucocorticoid/biosynthesis , Cell Line, Tumor , Female , Gene Deletion , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Male , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neoplasm Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Promoter Regions, Genetic/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , RNA Interference , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...