Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 47(5): 585-95, 1995 Sep 05.
Article in English | MEDLINE | ID: mdl-18623438

ABSTRACT

For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.

2.
Biotechnol Bioeng ; 46(3): 258-69, 1995 May 05.
Article in English | MEDLINE | ID: mdl-18623310

ABSTRACT

In three-phase internal loop airlift reactors, the detachment of biomass from suspended biofilm pellets in the presence of bare carrier particles was investigated under nongrowth conditions. The detachment rate was dominated by collisions between bare carrier particles and biofilm pellets. The concentration of bare carrier particles and the carrier roughness strongly influenced the detachment rate. A change in flow regime from bubbling to slug flow considerably increased the detachment rate. Otherwise, the superficial gas velocity did not directly affect the detachment rate. The influence of particle size was not clear. The bottom clearance did not affect the detachment rate within the tested range. Other aspects of reactor geometry might be important. The main detachment processes were abrasion and breakage of biofilm pellets. During the detachment process, two phases could be distinguished. In the first phase the detachment was relatively high, and both breakage and abrasion of biofilm pellets occurred. During the second phase, breakage dominated and the detachment rate was lower. The two-phase behavior is explained by differences in strength between the inner and outer biofilm layers, possibly caused by variations in local growth rates during biofilm formation. Differences in growth history might also explain the various detachment rates observed with different biofilm batches. (c) 1995 John Wiley & Sons, Inc.

3.
Biotechnol Bioeng ; 45(6): 481-7, 1995 Mar 20.
Article in English | MEDLINE | ID: mdl-18623247

ABSTRACT

The dynamic change in the overall detachment rate of spherical biofilms in a biofilm airlift suspension reactor was measured after a downshift of the substrate loading rate to zero while all other conditions remained constant. In contrast to the expectations, the overall detachment rate decreased rapidly to a nearly stable level. Correlations available from literature were not able to describe this phenomenon. Concepts were formulated which can describe the observations from this study. Research under dynamic conditions and careful monitoring of the biofilm surface area and biofilm morphology are necessary to elucidate and discriminate biofilm detachment mechanisms.

4.
Biotechnol Bioeng ; 44(8): 867-79, 1994 Oct.
Article in English | MEDLINE | ID: mdl-18618904

ABSTRACT

Fluorescent microparticles were used as tracer beads to measure the dynamics of solids in spherical biofilms in a biofilm airlift suspension reactor. Attachment to, release from, and penetration into the biofilms of the tracer beads were measured. The coverage of the biofilm surface was low and the steady state particle concentration on the surface was dependent on the biofilm surface characteristics. The measured attachment rate constant was identical in both experiments and appeared to be determined by the hydrodynamic conditions in the turbulent reactor. The attachment rate was much faster than the release rate of the tracer beads and, therefore, the solidsretention time in the biofilm particle is not due to a simple reversible adsorption-desorption process. The heterogeneity of the distribution oftracer beads on different sectors on the biofilm surface decreased duringthe attachment period. Due to random detachment processes the heterogeneity of the tracer bead distribution increased during the release periodThe tracer beads quickly penetrated into the biofilm and became distributed throughout the active layer of the biofilm. The observed penetration into biofilms, the nonuniform distribution on the biofilm surface, and the fast uptake and slow release of tracer beads cannot be described by a simple model based on a reversible adsorption-desorption mechanism, nor withexisting biofilm models. These biofilm models, which balance growth and advection assuming a uniform biofilm with a homogeneous surface, are inadequate for the description of the observed solids retention time in biofilms. Therefore, a new concept of biofilm dynamics is proposed, in which formation of cracks and fissures, which are rapidly filled with growing biomass, combined with nonuniform local detachment, explains the observed fast penetration into the biofilm of tracer beads, the long residence time, and the nonuniform distibution of fluorescent microparticles. (c) 1994 John Wiley & Sons, Inc.

5.
Biotechnol Bioeng ; 44(5): 595-608, 1994 Aug 20.
Article in English | MEDLINE | ID: mdl-18618795

ABSTRACT

In this article, the conditions for aerobic biofilm formation on suspended particles, the dynamics of biofilm formation, and the biomass production during the start-up of a Biofilm Airlift Suspension reactor (BAS reactor) have been studied. The dynamics of biofilm formation during start up in the biofilm airlift suspension reactor follows three consecutive stages: bare carrier, microcolonies or patchy biofilms on the carrier, and biofilms completely covering the carrier. The effect of hydraulic retention time and of substrate loading rate on the formation of biofilms were investigated. To obtain in a BAS reactor a high biomass concentration and predominantly continuous biofilms, which completely surround the carrier, the hydraulic retention time must be shorter than the inverse of the maximum growth rate of the suspended bacteria. At longer hydraulic retention times, a low amount of attached biomass can be present on the carrier material as patchy biofilms. During the start-up at short hydraulic retention times the bare carrier concentration decreases, the amount of biomass per biofilm particle remains constant, and biomass increase in the reactor is due to increasing numbers of biofilm particles. The substrate surface loading rate has effect only on the amount of biomass on the biofilm particle. A higher surface load leads to a thicker biofilm.A strong nonlinear increase of the concentration of attached biomass in time was observed. This can be explained by a decreased abrasion of the biofilm particles due to the decreasing concentration of bare carriers. The detachment rate per biofilm area during the start-up is independent of the substrate loading rate, but depends strongly upon the bare carrier concentration.The Pirt-maintenance concept is applicable to BAS reactors. Surplus biomass production is diminished at high biomass concentrations. The average maximal yield of biomass on substrate during the experiments presented in this article was 0.44 +/- 0.08 C-mol/C-mol, the maintenance value 0.019 +/- 0.012 C-mol/(C-mol h). The lowest actual biomass yield measured in this study was 0.15 C-mol/C-mol.

6.
Biotechnol Bioeng ; 42(4): 509-19, 1993 Aug 05.
Article in English | MEDLINE | ID: mdl-18613056

ABSTRACT

A thermodynamic framework has been provided for the description of maintenance requirements of microorganisms. The central parameter is the biomass specific Gibbs energy consumption for maintenance, m(E) (kJ/C-mol biomass . h). A large set of data has been used including (i) a large range of different organisms (bacteria, yeasts, plant cells), (ii) mixed cultures, (iii) heterotrophic and autotrophic growth, (iv) growth under aerobic and anaerobic conditions, and (v) a large temperature range (5-75 degrees C). It appears that only the temperature has a major influence, with an energy of activation of 69 kJ/mol. Different electron donors or electron acceptors only show a very minor influence on m(E). On the basis of the data set, temperature correlations of m(E) have been derived for aerobic and anaerobic growth. The generalized concept for maintenance Gibbs energy is used to establish a correlation which allows the estimation of the biomass yield on electron donor as a function of C-source, electron donor, electron acceptor, N source, growth rate, and temperature. The advantage of using the m(E) parameter over other maintenance-related parameters (like mu(e), m(O2), m(D), gamma(D)m(D)) is discussed.

7.
Biotechnol Bioeng ; 40(10): 1139-54, 1992 Dec 05.
Article in English | MEDLINE | ID: mdl-18601065

ABSTRACT

On the basis of the estimated Gibbs energy dissipation per C-mol biomass produced and a convenient black box description of microbial growth, a general equation for the calculation of the yield of biomass on electron donor has been obtained. This black box model defines four formal electron donating reactions for biomass, carbon source, electron donor, and electron acceptor. The proposed description leads to a simple equation which gives the biomass yield on electron donor for chemotrophic growth systems under carbon and energy limitation for which biomass is the only anabolic product. The variables involved are the degrees of reduction and the Gibbs energy characteristics of the four compounds, and the required Gibbs energy dissipation per C-mol produced of biomass. It appears that biomass yields on electron donor for auto- and heterotrophic growth under aerobic, denitrifying, and fermentative conditions can be estimated with 10-15% error in a range of Y(DX)-values of 0.01-0.80 C-mol/(C)-mol electron donor. Also, simple regularities in the Gibbs energy and enthalpy of organic substrates are found. Furthermore, simple relations are derived to calculate the thermodynamic maximal biomass yield, conditions required for growth to occur, heat production, biomass yield on electron acceptor, and anaerobic product yield. Finally a new definition of thermodynamic efficiency is derived.

SELECTION OF CITATIONS
SEARCH DETAIL
...