Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37272356

ABSTRACT

Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are gaining increasing attention for their roles in various pathophysiological processes. The RNA-binding protein quaking (QKI) has been identified as a regulator of circRNA formation. In this study, we investigate the role of QKI in the formation of circRNAs in the heart by performing RNA-sequencing on Qki-knockout mice. Loss of QKI resulted in the differential expression of 17% of the circRNAs in adult mouse hearts. Interestingly, the majority of the QKI-regulated circRNAs (58%) were derived from genes undergoing QKI-dependent splicing, indicating a relationship between back-splicing and linear splicing. We compared these QKI-dependent circRNAs with those regulated by RBM20, another cardiac splicing factor essential for circRNA formation. We found that QKI and RBM20 regulate the formation of a distinct, but partially overlapping set of circRNAs in the heart. Strikingly, many shared circRNAs were derived from the Ttn gene, and they were regulated in an opposite manner. Our findings indicate that QKI not only regulates alternative splicing in the heart but also the formation of circRNAs.


Subject(s)
Myocytes, Cardiac , RNA, Circular , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Myocytes, Cardiac/metabolism , Alternative Splicing/genetics , RNA Splicing , Mice, Knockout , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/metabolism
2.
Heart Rhythm O2 ; 4(12): 805-814, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38204457

ABSTRACT

Background: Patients with excess epicardial adipose tissue (EAT) are at increased risk of developing cardiac arrhythmias. EAT promotes arrhythmias by depolarizing the resting membrane of cardiomyocytes, which slows down conduction and facilitates re-entrant arrhythmias. We hypothesized that EAT slows conduction by secreting extracellular vesicles (EVs) and their microRNA (miRNA) cargo. Objective: We aimed to determine the role of EAT-derived EVs and their miRNA cargo in conduction slowing. Methods: EAT and subcutaneous adipose tissue (SAT) were collected from patients with atrial fibrillation. Adipose tissue explants were incubated in culture medium and secretome was collected. The numbers of EVs in the EAT and SAT secretome were measured by calibrated flow cytometry. EVs in the EAT secretome were isolated by size exclusion chromatography and miRNAs were sequenced. Pathway analysis was performed to predict candidates involved in cardiac electrophysiology. The candidates were validated in the EAT and SAT by quantitative real-time polymerase chain reaction. Finally, miRNA candidates were overexpressed in neonatal rat ventricular myocytes. Results: The EV concentration was higher in the EAT secretome than in the SAT and control secretomes. miRNA sequencing of EAT-derived EVs detected a total of 824 miRNAs. Pathway analysis led to the identification of 7 miRNAs potentially involved in regulation of cardiac resting membrane potential. Validation of those miRNA candidates showed that they were all expressed in EAT, and that miR-1-3p and miR-133a-3p were upregulated in EAT in comparison with SAT. Overexpression of miR-1-3p and miR-133a-3p in neonatal rat ventricular myocytes led to conduction slowing and reduced Kcnj2 and Kcnj12 expression. Conclusion: miR-1-3p and miR-133a-3p are potential mediators of EAT arrhythmogenicity.

3.
J Cell Sci ; 135(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35611612

ABSTRACT

The 14q32 locus is an imprinted region in the human genome which contains multiple non-coding RNAs. We investigated the role of the long non-coding RNA maternally expressed gene 8 (MEG8) in endothelial function and its underlying mechanism. A 5-fold increase in MEG8 was observed with increased passage number in human umbilical vein endothelial cells (HUVECs), suggesting MEG8 is induced during aging. MEG8 knockdown resulted in a 1.8-fold increase in senescence, suggesting MEG8 might be protective during aging. The endothelial barrier was also impaired after MEG8 silencing. MEG8 knockdown resulted in reduced expression of microRNA (miRNA)-370 and -494 but not -127, -487b and -410. Overexpression of miRNA-370 or -494 partially rescued the MEG8-silencing-induced barrier loss. Mechanistically, MEG8 regulates expression of miRNA-370 and -494 at the mature miRNA level through interaction with the RNA-binding proteins cold-inducible RNA-binding protein (CIRBP) and hydroxyacyl-CoA dehydrogenase trifunctional multi-enzyme complex subunit ß (HADHB). Mature miRNA-370 and miRNA-494 were found to interact with CIRBP, whereas precursor miRNA-370 and miRNA-494 were found to interact with HADHB. Individual CIRBP and HADHB silencing resulted in downregulation of miRNA-370 and induction of miRNA-494. These results suggest MEG8 interacts with CIRBP and HADHB and contributes to miRNA processing at the post-transcriptional level.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Endothelial Cells , Humans , MicroRNAs/genetics , RNA Interference , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics
4.
Physiol Rep ; 10(8): e15265, 2022 04.
Article in English | MEDLINE | ID: mdl-35439358

ABSTRACT

Heterozygous missense variants of the cardiac ryanodine receptor gene (RYR2) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). These missense variants of RYR2 result in a gain of function of the ryanodine receptors, characterized by increased sensitivity to activation by calcium that results in an increased propensity to develop calcium waves and delayed afterdepolarizations. We have recently detected a nonsense variant in RYR2 in a young patient who suffered an unexplained cardiac arrest. To understand the mechanism by which this variant in RYR2, p.(Arg4790Ter), leads to ventricular arrhythmias, human induced pluripotent stem cells (hiPSCs) harboring the novel nonsense variant in RYR2 were generated and differentiated into cardiomyocytes (RYR2-hiPSC-CMs) and molecular and calcium handling properties were studied. RYR2-hiPSC-CMs displayed significant calcium handling abnormalities at baseline and following treatment with isoproterenol. Treatment with carvedilol and nebivolol resulted in a significant reduction in calcium handling abnormalities in the RYR2-hiPSC-CMs. Expression of the mutant RYR2 allele was confirmed at the mRNA level and partial silencing of the mutant allele resulted in a reduction in calcium handling abnormalities at baseline. The nonsense variant behaves similarly to other gain of function variants in RYR2. Carvedilol and nebivolol may be suitable treatments for patients with gain of function RYR2 variants.


Subject(s)
Induced Pluripotent Stem Cells , Ryanodine Receptor Calcium Release Channel , Calcium/metabolism , Calcium Signaling , Carvedilol , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Myocytes, Cardiac/metabolism , Nebivolol/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
5.
Int J Mol Sci ; 23(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35409410

ABSTRACT

Long-QT syndrome type 1 (LQT1) is caused by mutations in KCNQ1. Patients heterozygous for such a mutation co-assemble both mutant and wild-type KCNQ1-encoded subunits into tetrameric Kv7.1 potassium channels. Here, we investigated whether allele-specific inhibition of mutant KCNQ1 by targeting a common variant can shift the balance towards increased incorporation of the wild-type allele to alleviate the disease in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). We identified the single nucleotide polymorphisms (SNP) rs1057128 (G/A) in KCNQ1, with a heterozygosity of 27% in the European population. Next, we determined allele-specificity of short-hairpin RNAs (shRNAs) targeting either allele of this SNP in hiPSC-CMs that carry an LQT1 mutation. Our shRNAs downregulated 60% of the A allele and 40% of the G allele without affecting the non-targeted allele. Suppression of the mutant KCNQ1 allele by 60% decreased the occurrence of arrhythmic events in hiPSC-CMs measured by a voltage-sensitive reporter, while suppression of the wild-type allele increased the occurrence of arrhythmic events. Furthermore, computer simulations based on another LQT1 mutation revealed that 60% suppression of the mutant KCNQ1 allele shortens the prolonged action potential in an adult cardiomyocyte model. We conclude that allele-specific inhibition of a mutant KCNQ1 allele by targeting a common variant may alleviate the disease. This novel approach avoids the need to design shRNAs to target every single mutation and opens up the exciting possibility of treating multiple LQT1-causing mutations with only two shRNAs.


Subject(s)
KCNQ1 Potassium Channel , Romano-Ward Syndrome , Adult , Alleles , Humans , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , RNA, Small Interfering , Romano-Ward Syndrome/genetics , Severity of Illness Index
6.
Circulation ; 143(15): 1502-1512, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33583186

ABSTRACT

BACKGROUND: TTN (Titin), the largest protein in humans, forms the molecular spring that spans half of the sarcomere to provide passive elasticity to the cardiomyocyte. Mutations that disrupt the TTN transcript are the most frequent cause of hereditary heart failure. We showed before that TTN produces a class of circular RNAs (circRNAs) that depend on RBM20 to be formed. In this study, we show that the back-splice junction formed by this class of circRNAs creates a unique motif that binds SRSF10 to enable it to regulate splicing. Furthermore, we show that one of these circRNAs (cTTN1) distorts both localization of and splicing by RBM20. METHODS: We calculated genetic constraint of the identified motif in 125 748 exomes collected from the gnomAD database. Furthermore, we focused on the highest expressed RBM20-dependent circRNA in the human heart, which we named cTTN1. We used shRNAs directed to the back-splice junction to induce selective loss of cTTN1 in human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Human genetics suggests reduced genetic tolerance of the generated motif, indicating that mutations in this motif might lead to disease. RNA immunoprecipitation confirmed binding of circRNAs with this motif to SRSF10. Selective loss of cTTN1 in human induced pluripotent stem cell-derived cardiomyocytes induced structural abnormalities, apoptosis, and reduced contractile force in engineered heart tissue. In line with its SRSF10 binding, loss of cTTN1 caused abnormal splicing of important cardiomyocyte SRSF10 targets such as MEF2A and CASQ2. Strikingly, loss of cTTN1 also caused abnormal splicing of TTN itself. Mechanistically, we show that loss of cTTN1 distorts both localization of and splicing by RBM20. CONCLUSIONS: We demonstrate that circRNAs formed from the TTN transcript are essential for normal splicing of key muscle genes by enabling splice regulators RBM20 and SRSF10. This shows that the TTN transcript also has regulatory roles, besides its well-known signaling and structural function. In addition, we demonstrate that the specific sequence created by the back-splice junction of these circRNAs has important functions. This highlights the existence of functionally important sequences that cannot be recognized as such in the human genome but provides an as-yet unrecognized source for functional sequence variation.


Subject(s)
Cell Cycle Proteins/metabolism , Connectin/metabolism , RNA Splicing/genetics , RNA, Circular/genetics , Repressor Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Humans
7.
BMC Bioinformatics ; 21(1): 164, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32349660

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a newly appreciated class of non-coding RNA molecules. Numerous tools have been developed for the detection of circRNAs, however computational tools to perform downstream functional analysis of circRNAs are scarce. RESULTS: We present circRNAprofiler, an R-based computational framework that runs after circRNAs have been identified. It allows to combine circRNAs detected by multiple publicly available annotation-based circRNA detection tools and to analyze their expression, genomic context, evolutionary conservation, biogenesis and putative functions. CONCLUSIONS: Overall, the circRNA analysis workflow implemented by circRNAprofiler is highly automated and customizable, and the results of the analyses can be used as starting point for further investigation in the role of specific circRNAs in any physiological or pathological condition.


Subject(s)
Computational Biology/methods , RNA, Circular/genetics , Software , Binding Sites/genetics , Gene Expression Regulation , Genome , Genome-Wide Association Study , Humans , Introns/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide/genetics , Repetitive Sequences, Nucleic Acid/genetics
8.
Front Physiol ; 11: 588679, 2020.
Article in English | MEDLINE | ID: mdl-33488393

ABSTRACT

Electronic pacemakers still face major shortcomings that are largely intrinsic to their hardware-based design. Radical improvements can potentially be generated by gene or cell therapy-based biological pacemakers. Our previous work identified adenoviral gene transfer of Hcn2 and SkM1, encoding a "funny current" and skeletal fast sodium current, respectively, as a potent combination to induce short-term biological pacing in dogs with atrioventricular block. To achieve long-term biological pacemaker activity, alternative delivery platforms need to be explored and optimized. The aim of the present study was therefore to investigate the functional delivery of Hcn2/SkM1 via human cardiomyocyte progenitor cells (CPCs). Nucleofection of Hcn2 and SkM1 in CPCs was optimized and gene transfer was determined for Hcn2 and SkM1 in vitro. The modified CPCs were analyzed using patch-clamp for validation and characterization of functional transgene expression. In addition, biophysical properties of Hcn2 and SkM1 were further investigated in lentivirally transduced CPCs by patch-clamp analysis. To compare both modification methods in vivo, CPCs were nucleofected or lentivirally transduced with GFP and injected in the left ventricle of male NOD-SCID mice. After 1 week, hearts were collected and analyzed for GFP expression and cell engraftment. Subsequent functional studies were carried out by computational modeling. Both nucleofection and lentiviral transduction of CPCs resulted in functional gene transfer of Hcn2 and SkM1 channels. However, lentiviral transduction was more efficient than nucleofection-mediated gene transfer and the virally transduced cells survived better in vivo. These data support future use of lentiviral transduction over nucleofection, concerning CPC-based cardiac gene delivery. Detailed patch-clamp studies revealed Hcn2 and Skm1 current kinetics within the range of previously reported values of other cell systems. Finally, computational modeling indicated that CPC-mediated delivery of Hcn2/SkM1 can generate stable pacemaker function in human ventricular myocytes. These modeling studies further illustrated that SkM1 plays an essential role in the final stage of diastolic depolarization, thereby enhancing biological pacemaker functioning delivered by Hcn2. Altogether these studies support further development of CPC-mediated delivery of Hcn2/SkM1 and functional testing in bradycardia models.

9.
J Am Coll Cardiol ; 73(18): 2310-2324, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31072576

ABSTRACT

BACKGROUND: The short QT syndrome (SQTS) is an inherited arrhythmogenic syndrome characterized by abnormal ion channel function, life-threatening arrhythmias, and sudden cardiac death. OBJECTIVES: The purpose of this study was to establish a patient-specific human-induced pluripotent stem cell (hiPSC) model of the SQTS, and to provide mechanistic insights into its pathophysiology and therapy. METHODS: Patient-specific hiPSCs were generated from a symptomatic SQTS patient carrying the N588K mutation in the KCNH2 gene, differentiated into cardiomyocytes, and compared with healthy and isogenic (established by CRISPR/Cas9-based mutation correction) control hiPSC-derived cardiomyocytes (hiPSC-CMs). Patch-clamp was used to evaluate action-potential (AP) and IKr current properties at the cellular level. Conduction and arrhythmogenesis were studied at the tissue level using confluent 2-dimensional hiPSC-derived cardiac cell sheets (hiPSC-CCSs) and optical mapping. RESULTS: Intracellular recordings demonstrated shortened action-potential duration (APD) and abbreviated refractory period in the SQTS-hiPSC-CMs. Similarly, voltage- and AP-clamp recordings revealed increased IKr current density due to attenuated inactivation, primarily in the AP plateau phase. Optical mapping of the SQTS-hiPSC-CCSs revealed shortened APD, impaired APD-rate adaptation, abbreviated wavelength of excitation, and increased inducibility of sustained spiral waves. Phase-mapping analysis revealed accelerated and stabilized rotors manifested by increased rotor rotation frequency, increased rotor curvature, decreased core meandering, and increased rotor complexity. Application of quinidine and disopyramide, but not sotalol, normalized APD and suppressed arrhythmia induction. CONCLUSIONS: A novel hiPSC-based model of the SQTS was established at both the cellular and tissue levels. This model recapitulated the disease phenotype in the culture dish and provided important mechanistic insights into arrhythmia mechanisms in the SQTS and its treatment.


Subject(s)
Arrhythmias, Cardiac , Myocytes, Cardiac/metabolism , Action Potentials , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/prevention & control , Cells, Cultured , ERG1 Potassium Channel/genetics , Humans , Induced Pluripotent Stem Cells , Mutation , Patch-Clamp Techniques , Patient-Specific Modeling
10.
Front Physiol ; 8: 797, 2017.
Article in English | MEDLINE | ID: mdl-29075204

ABSTRACT

Background: Cardiomyocyte progenitor cells (CMPCs) are a promising cell source for regenerative cell therapy to improve cardiac function after myocardial infarction. However, it is unknown whether undifferentiated CMPCs have arrhythmogenic risks. We investigate whether undifferentiated, regionally applied, human fetal CMPCs form a pro-arrhythmic substrate in co-culture with neonatal rat ventricular myocytes (NRVMs). Method: Unipolar extracellular electrograms, derived from micro-electrode arrays (8 × 8 electrodes) containing monolayers of NRVMs (control), or co-cultures of NRVMs and locally seeded CMPCs were used to determine conduction velocity and the incidence of tachy-arrhythmias. Micro-electrodes were used to record action potentials. Conditioned medium (Cme) of CMPCs was used to distinguish between coupling or paracrine effects. Results: Co-cultures demonstrated conduction slowing (5.6 ± 0.3 cm/s, n = 50) compared to control monolayers (13.4 ± 0.4 cm/s, n = 26) and monolayers subjected to Cme (13.7 ± 0.6 cm/s, n = 11, all p < 0.001). Furthermore, co-cultures had a more depolarized resting membrane than control monolayers (-47.3 ± 17.4 vs. -64.8 ± 7.7 mV, p < 0.001) and monolayers subjected to Cme (-64.4 ± 8.1 mV, p < 0.001). Upstroke velocity was significantly decreased in co-cultures and action potential duration was prolonged. The CMPC region was characterized by local ST-elevation in the recorded electrograms. The spontaneous rhythm was faster and tachy-arrhythmias occurred more often in co-cultured monolayers than in control monolayers (42.0 vs. 5.4%, p < 0.001). Conclusion: CMPCs form a pro-arrhythmic substrate when co-cultured with neonatal cardiomyocytes. Electrical coupling between both cell types leads to current flow between a, slowly conducting, depolarized and the normal region leading to local ST-elevations and the occurrence of tachy-arrhythmias originating from the non-depolarized zone.

11.
Cardiovasc Drugs Ther ; 31(3): 345-365, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28752208

ABSTRACT

Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with pronounced morbidity and mortality. Its prevalence, expected to further increase for the forthcoming years, and associated frequent hospitalizations turn AF into a major health problem. Structural and electrical atrial remodelling underlie the substrate for AF, but the exact mechanisms driving this remodelling remain incompletely understood. Recent studies have shown that microRNAs (miRNA), short non-coding RNAs that regulate gene expression, may be involved in the pathophysiology of AF. MiRNAs have been implicated in AF-induced ion channel remodelling and fibrosis. MiRNAs could therefore provide insight into AF pathophysiology or become novel targets for therapy with miRNA mimics or anti-miRNAs. Moreover, circulating miRNAs have been suggested as a new class of diagnostic and prognostic biomarkers of AF. However, the origin and function of miRNAs in tissue and plasma frequently remain unknown and studies investigating the role of miRNAs in AF vary in design and focus and even present contradicting results. Here, we provide a systematic review of the available clinical and functional studies investigating the tissue and plasma miRNAs in AF and will thereafter discuss the potential of miRNAs as biomarkers or novel therapeutic targets in AF.


Subject(s)
Atrial Fibrillation/metabolism , MicroRNAs/metabolism , Animals , Biomarkers/metabolism , Gene Expression/physiology , Humans
12.
Article in English | MEDLINE | ID: mdl-28630169

ABSTRACT

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia type 2 (CPVT2) results from autosomal recessive CASQ2 mutations, causing abnormal Ca2+-handling and malignant ventricular arrhythmias. We aimed to establish a patient-specific human induced pluripotent stem cell (hiPSC) model of CPVT2 and to use the generated hiPSC-derived cardiomyocytes to gain insights into patient-specific disease mechanism and pharmacotherapy. METHODS AND RESULTS: hiPSC cardiomyocytes were derived from a CPVT2 patient (D307H-CASQ2 mutation) and from healthy controls. Laser-confocal Ca2+ and voltage imaging showed significant Ca2+-transient irregularities, marked arrhythmogenicity manifested by early afterdepolarizations and triggered arrhythmias, and reduced threshold for store overload-induced Ca2+-release events in the CPVT2-hiPSC cardiomyocytes when compared with healthy control cells. Pharmacological studies revealed the prevention of adrenergic-induced arrhythmias by ß-blockers (propranolol and carvedilol), flecainide, and the neuronal sodium-channel blocker riluzole; a direct antiarrhythmic action of carvedilol (independent of its α/ß-adrenergic blocking activity), flecainide, and riluzole; and suppression of abnormal Ca2+ cycling by the ryanodine stabilizer JTV-519 and carvedilol. Mechanistic insights were gained on the different antiarrhythmic actions of the aforementioned drugs, with carvedilol and JTV-519 (but not flecainide or riluzole) acting primarily through sarcoplasmic reticulum stabilization. Finally, comparable outcomes were found between flecainide and labetalol antiarrhythmic effects in vitro and the clinical results in the same patient. CONCLUSIONS: These results demonstrate the ability of hiPSCs cardiomyocytes to recapitulate CPVT2 disease phenotype and drug response in the culture dish, to provide novel insights into disease and drug therapy mechanisms, and potentially to tailor patient-specific drug therapy.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Precision Medicine , Tachycardia, Ventricular/drug therapy , Action Potentials , Adrenergic Agonists/pharmacology , Calcium Signaling/drug effects , Calsequestrin/genetics , Calsequestrin/metabolism , Case-Control Studies , Cell Line , Dose-Response Relationship, Drug , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mutation , Myocytes, Cardiac/metabolism , Patient Selection , Phenotype , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology , Time Factors , Young Adult
13.
Stem Cell Reports ; 5(4): 582-96, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26372632

ABSTRACT

The advent of the human-induced pluripotent stem cell (hiPSC) technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPSC-derived cardiomyocytes (hiPSC-CMs). To achieve this goal, we combined the hiPSC technology with genetically encoded voltage (ArcLight) and calcium (GCaMP5G) fluorescent indicators. Expression of ArcLight and GCaMP5G in hiPSC-CMs permitted to reliably follow changes in transmembrane potential and intracellular calcium levels, respectively. This allowed monitoring short- and long-term changes in action-potential and calcium-handling properties and the development of arrhythmias in response to several pharmaceutical agents and in hiPSC-CMs derived from patients with different inherited arrhythmogenic syndromes. Combining genetically encoded fluorescent reporters with hiPSC-CMs may bring a unique value to the study of inherited disorders, developmental biology, and drug development and testing.


Subject(s)
Action Potentials , Calcium/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Arrhythmias, Cardiac/metabolism , Calcium/analysis , Cell Differentiation , Cells, Cultured , Gene Expression , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Myocytes, Cardiac/metabolism , Optical Imaging/methods , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Transduction, Genetic , Transgenes
14.
Cardiovasc Res ; 104(1): 61-71, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25103110

ABSTRACT

AIMS: The overloaded heart remodels by cardiomyocyte hypertrophy and interstitial fibrosis, which contributes to the development of heart failure. Signalling via the TGFß-pathway is crucial for this remodelling. Here we tested the hypothesis that microRNAs in the overloaded heart regulate this remodelling process via inhibition of the TGFß-pathway. METHODS AND RESULTS: We show that the miRNA-15 family, which we found to be up-regulated in the overloaded heart in multiple species, inhibits the TGFß-pathway by targeting of TGFBR1 and several other genes within this pathway directly or indirectly, including p38, SMAD3, SMAD7, and endoglin. Inhibition of miR-15b by subcutaneous injections of LNA-based antimiRs in C57BL/6 mice subjected to transverse aorta constriction aggravated fibrosis and to a lesser extent also hypertrophy. CONCLUSION: We identified the miR-15 family as a novel regulator of cardiac hypertrophy and fibrosis acting by inhibition of the TGFß-pathway.


Subject(s)
Cardiomegaly/metabolism , Cardiomyopathies/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Ventricular Remodeling , 3' Untranslated Regions , Animals , COS Cells , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Case-Control Studies , Chlorocebus aethiops , Disease Models, Animal , Fibrosis , Hep G2 Cells , Humans , Mice, Inbred C57BL , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats, Transgenic , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism , Transfection , Up-Regulation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
15.
PLoS One ; 9(5): e96290, 2014.
Article in English | MEDLINE | ID: mdl-24789369

ABSTRACT

MicroRNAs (miRNAs) regulate many aspects of cellular function and their deregulation has been implicated in heart disease. MiRNA-30c is differentially expressed in the heart during the progression towards heart failure and in vitro studies hint to its importance in cellular physiology. As little is known about the in vivo function of miRNA-30c in the heart, we generated transgenic mice that specifically overexpress miRNA-30c in cardiomyocytes. We show that these mice display no abnormalities until about 6 weeks of age, but subsequently develop a severely dilated cardiomyopathy. Gene expression analysis of the miRNA-30c transgenic hearts before onset of the phenotype indicated disturbed mitochondrial function. This was further evident by the downregulation of mitochondrial oxidative phosphorylation (OXPHOS) complexes III and IV at the protein level. Taken together these data indicate impaired mitochondrial function due to OXPHOS protein depletion as a potential cause for the observed dilated cardiomyopathic phenotype in miRNA-30c transgenic mice. We thus establish an in vivo role for miRNA-30c in cardiac physiology, particularly in mitochondrial function.


Subject(s)
Cardiomyopathy, Dilated/genetics , Gene Expression Profiling , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Animals , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Echocardiography , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/ultrastructure , Oligonucleotide Array Sequence Analysis , Oxidative Phosphorylation , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Time Factors
16.
Am J Physiol Heart Circ Physiol ; 303(9): H1085-95, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22942181

ABSTRACT

One of the major challenges in cardiovascular disease is the identification of reliable clinical biomarkers that can be routinely measured in plasma. MicroRNAs (miRNAs) were recently discovered to circulate in the bloodstream in a remarkably stable form. Because of their stability and often tissue- and disease-specific expression and the possibility to measure them with high sensitivity and specificity, miRNAs are emerging as new diagnostic biomarkers. In this review we will provide an overview of the potential of circulating miRNAs as biomarkers for a wide range of cardiovascular diseases such as coronary artery disease, myocardial infarction, hypertension, heart failure, viral myocarditis, and type-2 diabetes mellitus. Furthermore, we will discuss the challenges with regard to further validation in large patient cohorts, and we will discuss how the measurement of multiple miRNAs simultaneously might improve the accuracy of the diagnostic test.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , MicroRNAs/blood , Biomarkers/blood , Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Humans , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Sensitivity and Specificity
17.
Circ Res ; 110(3): 483-95, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22302755

ABSTRACT

In the past few years, the crucial role of different micro-RNAs (miRNAs) in the cardiovascular system has been widely recognized. Recently, it was discovered that extracellular miRNAs circulate in the bloodstream and that such circulating miRNAs are remarkably stable. This has raised the possibility that miRNAs may be probed in the circulation and can serve as novel diagnostic markers. Although the precise cellular release mechanisms of miRNAs remain largely unknown, the first studies revealed that these circulating miRNAs may be delivered to recipient cells, where they can regulate translation of target genes. In this review, we will discuss the nature of the stability of miRNAs that circulate in the bloodstream and discuss the available evidence regarding the possible function of these circulating miRNAs in distant cell-to-cell communication. Furthermore, we summarize and discuss the usefulness of circulating miRNAs as biomarkers for a wide range of cardiovascular diseases such as myocardial infarction, heart failure, atherosclerosis, hypertension, and type 2 diabetes mellitus.


Subject(s)
Cardiovascular Diseases/physiopathology , Extracellular Matrix/physiology , MicroRNAs/blood , Animals , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Cell Communication/physiology , Humans , Models, Animal
18.
Cardiovasc Res ; 93(4): 573-82, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22180601

ABSTRACT

Multiple structural changes are known to occur in a failing heart. Myocyte hypertrophy, cardiomyocyte apoptosis, interstitial fibrosis, reduced capillary density, and activation of the immune system are all involved in the pathogenesis and progression of heart failure (HF). The molecular mechanisms underlying these changes of the myocardium have been extensively studied, and many pathways involved in these processes have been uncovered. Recently, it has become evident that a novel class of small non-coding RNAs, called miRNAs, also plays a key role in these structural changes of the heart. This review summarizes the current insights on the role of miRNAs outside myocytes in the heart. Specifically, we will discuss miRNA function in fibroblasts, endothelial cells and immune cells in response to myocardial stress as occurs after myocardial infarction and in the pathogenesis of HF.


Subject(s)
Heart Failure/pathology , Heart Failure/physiopathology , MicroRNAs/physiology , Myocardium/pathology , Animals , Cell Communication/physiology , Disease Models, Animal , Endothelium, Vascular/pathology , Fibroblasts/pathology , Fibrosis , Humans , Neovascularization, Pathologic/pathology
19.
Eur Heart J ; 33(6): 714-23, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22199116

ABSTRACT

AIMS: Heterozygous mutations in KCNQ1 cause type 1 long QT syndrome (LQT1), a disease characterized by prolonged heart rate-corrected QT interval (QTc) and life-threatening arrhythmias. It is unknown why disease penetrance and expressivity is so variable between individuals hosting identical mutations. We aimed to study whether this can be explained by single nucleotide polymorphisms (SNPs) in KCNQ1's 3' untranslated region (3'UTR). METHODS AND RESULTS: This study was performed in 84 LQT1 patients from the Academic Medical Center in Amsterdam and validated in 84 LQT1 patients from the Mayo Clinic in Rochester. All patients were genotyped for SNPs in KCNQ1's 3'UTR, and six SNPs were found. Single nucleotide polymorphisms rs2519184, rs8234, and rs10798 were associated in an allele-specific manner with QTc and symptom occurrence. Patients with the derived SNP variants on their mutated KCNQ1 allele had shorter QTc and fewer symptoms, while the opposite was also true: patients with the derived SNP variants on their normal KCNQ1 allele had significantly longer QTc and more symptoms. Luciferase reporter assays showed that the expression of KCNQ1's 3'UTR with the derived SNP variants was lower than the expression of the 3'UTR with the ancestral SNP variants. CONCLUSION: Our data indicate that 3'UTR SNPs potently modify disease severity in LQT1. The allele-specific effects of the SNPs on disease severity and gene expression strongly suggest that they are functional variants that directly alter the expression of the allele on which they reside, and thereby influence the balance between proteins stemming from either the normal or the mutant KCNQ1 allele.


Subject(s)
3' Untranslated Regions/genetics , KCNQ1 Potassium Channel/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Romano-Ward Syndrome/genetics , Adult , Alleles , Animals , Electrocardiography , Female , Genetic Variation , Heterozygote , Humans , Luciferases/metabolism , Male , Myocytes, Cardiac/enzymology , Rats , Romano-Ward Syndrome/enzymology , Transfection
20.
PLoS One ; 6(10): e25946, 2011.
Article in English | MEDLINE | ID: mdl-22022480

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide, underscoring the need to improve diagnostic strategies. Platelets play a major role, not only in the process of acute thrombosis during plaque rupture, but also in the formation of atherosclerosis itself. MicroRNAs are endogenous small non-coding RNAs that control gene expression and are expressed in a tissue and disease-specific manner. Therefore they have been proposed to be useful biomarkers. It remains unknown whether differences in miRNA expression levels in platelets can be found between patients with premature CAD and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: In this case-control study we measured relative expression levels of platelet miRNAs using microarrays from 12 patients with premature CAD and 12 age- and sex-matched healthy controls. Six platelet microRNAs were significantly upregulated (miR340*, miR451, miR454*, miR545:9.1. miR615-5p and miR624*) and one miRNA (miR1280) was significantly downregulated in patients with CAD as compared to healthy controls. To validate these results, we measured the expression levels of these candidate miRNAs by qRT-PCR in platelets of individuals from two independent cohorts; validation cohort I consisted of 40 patients with premature CAD and 40 healthy controls and validation cohort II consisted of 27 patients with artery disease and 40 healthy relatives. MiR340* and miR624* were confirmed to be upregulated in patients with CAD as compared to healthy controls in both validation cohorts. CONCLUSION/SIGNIFICANCE: Two miRNAs in platelets are significantly upregulated in patients with CAD as compared to healthy controls. Whether the two identified miRNAs can be used as biomarkers and whether they are cause or consequence of the disease remains to be elucidated in a larger prospective study.


Subject(s)
Blood Platelets/metabolism , Coronary Artery Disease/genetics , MicroRNAs/genetics , Up-Regulation/genetics , Adult , Case-Control Studies , Cohort Studies , Gene Expression Profiling , Genetic Association Studies , Humans , Male , MicroRNAs/metabolism , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...