Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS One ; 15(10): e0239136, 2020.
Article in English | MEDLINE | ID: mdl-33035224

ABSTRACT

Ocean warming, ocean acidification and overfishing are major threats to the structure and function of marine ecosystems. Driven by increasing anthropogenic emissions of CO2, ocean warming is leading to global redistribution of marine biota and altered ecosystem dynamics, while ocean acidification threatens the ability of calcifying marine organisms to form skeletons due to decline in saturation state of carbonate Ω and pH. In Tasmania, the interaction between overfishing of sea urchin predators and rapid ocean warming has caused a phase-shift from productive kelp beds to overgrazed sea urchin barren grounds, however potential impacts of ocean acidification on this system have not been considered despite this threat for marine ecosystems globally. Here we use automated loggers and point measures of pH, spanning kelp beds and barren grounds, to reveal that kelp beds have the capacity to locally ameliorate effects of ocean acidification, via photosynthetic drawdown of CO2, compared to unvegetated barren grounds. Based on meta-analysis of anticipated declines in physiological performance of grazing urchins to decreasing pH and assumptions of nil adaptation, future projection of OA across kelp-barrens transition zones reveals that kelp beds could act as important pH refugia, with urchins potentially becoming increasingly challenged at distances >40 m from kelp beds. Using spatially explicit simulation of physicochemical feedbacks between grazing urchins and their kelp prey, we show a stable mosaicked expression of kelp patches to emerge on barren grounds. Depending on the adaptative capacity of sea urchins, future declines in pH appear poised to further alter phase-shift dynamics for reef communities; thus, assessing change in spatial-patterning of reef-scapes may indicate cascading ecological impacts of ocean acidification.


Subject(s)
Kelp , Oceans and Seas , Refugium , Animals , Aquatic Organisms/metabolism , Climate Change , Computer Simulation , Conservation of Natural Resources , Ecosystem , Fisheries , Food Chain , Hydrogen-Ion Concentration , Kelp/metabolism , Sea Urchins/metabolism , Seawater/chemistry , Tasmania
2.
Sci Rep ; 10(1): 18602, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110129

ABSTRACT

Coral reefs are highly sensitive to ocean acidification due to rising atmospheric CO2 concentrations. We present 10 years of data (2009-2019) on the long-term trends and sources of variation in the carbon chemistry from two fixed stations in the Australian Great Barrier Reef. Data from the subtropical mid-shelf GBRWIS comprised 3-h instrument records, and those from the tropical coastal NRSYON were monthly seawater samples. Both stations recorded significant variation in seawater CO2 fugacity (fCO2), attributable to seasonal, daytime, temperature and salinity fluctuations. Superimposed over this variation, fCO2 progressively increased by > 2.0 ± 0.3 µatm year-1 at both stations. Seawater temperature and salinity also increased throughout the decade, whereas seawater pH and the saturation state of aragonite declined. The decadal upward fCO2 trend remained significant in temperature- and salinity-normalised data. Indeed, annual fCO2 minima are now higher than estimated fCO2 maxima in the early 1960s, with mean fCO2 now ~ 28% higher than 60 years ago. Our data indicate that carbonate dissolution from the seafloor is currently unable to buffer the Great Barrier Reef against ocean acidification. This is of great concern for the thousands of coral reefs and other diverse marine ecosystems located in this vast continental shelf system.

3.
Sci Rep ; 9(1): 7592, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31110210

ABSTRACT

To improve estimates of the long-term response of the marine carbon system to climate change a better understanding of the seasonal and interannual variability is needed. We use high-frequency multi-year data at three locations identified as climate change hotspots: two sites located close to South Pacific boundary currents and one in the Subantarctic Zone (SAZ). We investigate and identify the main drivers involved in the seasonal an interannual (2012-2016) variability of the carbon system. The seasonal variability at boundary current sites is temporally different and highly controlled by sea surface temperature. Advection processes also play a significant role on the monthly changes of the carbon system at the western boundary current site. The interannual variability at these sites most likely responds to long-term variability in oceanic circulation ultimately related to climatic indices such as the El Niño Southern Oscillation, the Pacific Decadal Oscillation and the Southern Annular Mode (SAM). In the SAZ, advection and entrainment processes drive most of the seasonality, augmented by the action of biological processes in spring. Given the relevance of advection and entrainment processes at SAZ, the interannual variability is most probably modulated by changes in the regional winds linked to the variability of the SAM.

4.
J Environ Manage ; 182: 641-650, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27564868

ABSTRACT

Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.


Subject(s)
Conservation of Natural Resources/methods , Coral Reefs , Ecosystem , Animals , Australia , Cost-Benefit Analysis , Fisheries , Fishes , Hydrogen-Ion Concentration , Marine Biology , Oceans and Seas
5.
Nat Commun ; 7: 10732, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26907171

ABSTRACT

The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.


Subject(s)
Anthozoa/metabolism , Calcium Carbonate/metabolism , Coral Reefs , Seawater/chemistry , Animals , Hydrodynamics , Hydrogen-Ion Concentration , Models, Biological , Models, Chemical , Oceans and Seas
6.
Science ; 349(6253): 1221-4, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26359401

ABSTRACT

Several studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.


Subject(s)
Carbon Dioxide/chemistry , Carbon Sequestration , Oceans and Seas , Seawater/chemistry , Antarctic Regions , Atmosphere/chemistry , Computer Simulation , Neural Networks, Computer
7.
PLoS One ; 9(12): e113652, 2014.
Article in English | MEDLINE | ID: mdl-25517905

ABSTRACT

Sustained observations allow for the tracking of change in oceanography and ecosystems, however, these are rare, particularly for the Southern Hemisphere. To address this in part, the Australian Integrated Marine Observing System (IMOS) implemented a network of nine National Reference Stations (NRS). The network builds on one long-term location, where monthly water sampling has been sustained since the 1940s and two others that commenced in the 1950s. In-situ continuously moored sensors and an enhanced monthly water sampling regime now collect more than 50 data streams. Building on sampling for temperature, salinity and nutrients, the network now observes dissolved oxygen, carbon, turbidity, currents, chlorophyll a and both phytoplankton and zooplankton. Additional parameters for studies of ocean acidification and bio-optics are collected at a sub-set of sites and all data is made freely and publically available. Our preliminary results demonstrate increased utility to observe extreme events, such as marine heat waves and coastal flooding; rare events, such as plankton blooms; and have, for the first time, allowed for consistent continental scale sampling and analysis of coastal zooplankton and phytoplankton communities. Independent water sampling allows for cross validation of the deployed sensors for quality control of data that now continuously tracks daily, seasonal and annual variation. The NRS will provide multi-decadal time series, against which more spatially replicated short-term studies can be referenced, models and remote sensing products validated, and improvements made to our understanding of how large-scale, long-term change and variability in the global ocean are affecting Australia's coastal seas and ecosystems. The NRS network provides an example of how a continental scaled observing systems can be developed to collect observations that integrate across physics, chemistry and biology.


Subject(s)
Biological Phenomena , Chemical Phenomena , Oceanography/methods , Physical Phenomena , Australia , Laboratories , Oceanography/instrumentation , Phytoplankton , Quality Control , Statistics as Topic , Telemetry , Temperature
8.
PLoS One ; 9(11): e112161, 2014.
Article in English | MEDLINE | ID: mdl-25426626

ABSTRACT

Coral reef calcification is predicted to decline as a result of ocean acidification and other anthropogenic stressors. The majority of studies predicting declines based on in situ relationships between environmental parameters and net community calcification rate have been location-specific, preventing accurate predictions for coral reefs globally. In this study, net community calcification and production were measured on a coral reef flat at One Tree Island, Great Barrier Reef, using Lagrangian flow respirometry and slack water methods. Net community calcification, daytime net photosynthesis and nighttime respiration were higher under the flow respirometry method, likely due to increased water flow relative to the slack water method. The two methods also varied in the degrees to which they were influenced by potential measurement uncertainties. The difference in the results from these two commonly used methods implies that some of the location-specific differences in coral reef community metabolism may be due to differences in measurement methods.


Subject(s)
Anthozoa/physiology , Calcification, Physiologic , Carbon Dioxide/analysis , Seawater/chemistry , Animals , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Coral Reefs , Hydrodynamics , Hydrogen-Ion Concentration , Photosynthesis/physiology
9.
Glob Chang Biol ; 19(7): 2264-75, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23504957

ABSTRACT

Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible.


Subject(s)
Environmental Monitoring/methods , Global Warming , Sea Urchins/growth & development , Seawater/chemistry , Animals , Antarctic Regions , Calcification, Physiologic , Embryo, Nonmammalian/pathology , Embryo, Nonmammalian/physiology , Embryonic Development/physiology , Hydrogen-Ion Concentration , Larva/growth & development , Larva/physiology , Oceans and Seas , Principal Component Analysis
10.
Glob Chang Biol ; 19(5): 1632-41, 2013 May.
Article in English | MEDLINE | ID: mdl-23505026

ABSTRACT

Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2 ), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short-term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario. Rather than observing a linear increase in reef flat partial pressure of CO2 (pCO2 ) in concert with rising atmospheric concentrations, the inclusion of in situ diurnal variability results in a highly nonlinear threefold amplification of the pCO2 signal by the end of the century. This significant nonlinear amplification of diurnal pCO2 variability occurs as a result of combining natural diurnal biological CO2 metabolism with long-term decreases in seawater buffer capacity, which occurs via increasing anthropogenic CO2 absorption by the ocean. Under the same benthic community composition, the amplification in the variability in pCO2 is likely to lead to exposure to mean maximum daily pCO2 levels of ca. 2100 µatm, with corrosive conditions with respect to aragonite by end-century at our study site. Minimum pCO2 levels will become lower relative to the mean offshore value (ca. threefold increase in the difference between offshore and minimum reef flat pCO2 ) by end-century, leading to a further increase in the pCO2 range that organisms are exposed to. The biological consequences of short-term exposure to these extreme CO2 conditions, coupled with elevated long-term mean CO2 conditions are currently unknown and future laboratory experiments will need to incorporate natural variability to test this. The amplification of pCO2 that we describe here is not unique to our study location, but will occur in all shallow coastal environments where high biological productivity drives large natural variability in carbonate chemistry.


Subject(s)
Acids/chemistry , Carbon Dioxide/metabolism , Carbonates/metabolism , Climate Change , Seawater/chemistry , Coral Reefs , Models, Theoretical , Oceans and Seas , Queensland
11.
Ecol Lett ; 14(2): 156-62, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21155961

ABSTRACT

Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO(2) may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO(2) (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO(2) and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.


Subject(s)
Anthozoa/growth & development , Carbon Dioxide/chemistry , Phaeophyceae/growth & development , Animals , Coral Reefs , Hydrogen-Ion Concentration , Queensland , Seaweed/growth & development
12.
Anal Chem ; 81(5): 1855-64, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19193192

ABSTRACT

The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.


Subject(s)
Argon/chemistry , Mass Spectrometry/methods , Oxygen/chemistry , Calibration , Gases/chemistry , Oxygen Isotopes/chemistry
13.
Science ; 317(5841): 1067-70, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17717181

ABSTRACT

Biogeochemical rate processes in the Southern Ocean have an important impact on the global environment. Here, we summarize an extensive set of published and new data that establishes the pattern of gross primary production and net community production over large areas of the Southern Ocean. We compare these rates with model estimates of dissolved iron that is added to surface waters by aerosols. This comparison shows that net community production, which is comparable to export production, is proportional to modeled input of soluble iron in aerosols. Our results strengthen the evidence that the addition of aerosol iron fertilizes export production in the Southern Ocean. The data also show that aerosol iron input particularly enhances gross primary production over the large area of the Southern Ocean downwind of dry continental areas.


Subject(s)
Ecosystem , Iron/analysis , Phytoplankton/growth & development , Seawater , Wind , Atmosphere , Oceans and Seas , Oxygen/analysis , Seasons , Seawater/chemistry
14.
Science ; 305(5682): 367-71, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15256665

ABSTRACT

Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.


Subject(s)
Carbon Dioxide/analysis , Industry , Seawater/chemistry , Animals , Atmosphere , Calcification, Physiologic , Calcium Carbonate/analysis , Carbon/analysis , Carbon/metabolism , Fossil Fuels , Hydrogen-Ion Concentration , Oceans and Seas , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...