Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Dairy Sci ; 105(4): 3559-3573, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35094853

ABSTRACT

Bovine viral diarrhea (BVD) is endemic in the United Kingdom and causes major economic losses. Control is largely voluntary for individual farmers and is likely to be influenced by psychosocial factors, such as altruism, trust, and psychological proximity (feeling close) to relevant "others," such as farmers, veterinarians, the government, and their cows. These psychosocial factors (factors with both psychological and social aspects) are important determinants of how people make decisions related to their own health, many of which have not been studied in the context of infectious disease control by farmers. Farmer psychosocial profiles were investigated using multiple validated measures in an observational survey of 475 UK cattle farmers using the capability, opportunity, motivation-behavior (COM-B) framework. Farmers were clustered by their BVD control practices using latent class analysis. Farmers were split into 5 BVD control behavior classes, which were tested for associations with the psychosocial and COM-B factors using multinomial logistic regression, with doing nothing as the baseline class. Farmers who were controlling disease both for themselves and others were more likely to do something to control BVD (e.g., test, vaccinate). Farmers who did not trust other farmers, had high psychological capability (knowledge and understanding of how to control disease), and had high physical opportunity (time and money to control disease) were more likely to have a closed, separate herd and test. Farmers who did not trust other farmers were also more likely to undertake many prevention strategies with an open herd. Farmers with high automatic motivation (habits and emotions) and reflective motivation (decisions and goals) were more likely to vaccinate and test, alone or in combination with other controls. Farmers with high psychological proximity (feeling of closeness) to their veterinarian were more likely to undertake many prevention strategies in an open herd. Farmers with high psychological proximity to dairy farmers and low psychological proximity to beef farmers were more likely to keep their herd closed and separate and test or vaccinate and test. Farmers who had a lot of trust in other farmers and invested in them, rather than keeping everything for themselves, were more likely to be careful introducing new stock and test. In conclusion, farmer psychosocial factors were associated with strategies for BVD control in UK cattle farmers. Psychological proximity to veterinarians was a novel factor associated with proactive BVD control and was more important than the more extensively investigated trust. These findings highlight the importance of a close veterinarian-farmer relationship and are important for promoting effective BVD control by farmers, which has implications for successful nationwide BVD control and eradication schemes.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Viruses, Bovine Viral , Veterinarians , Animals , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Cattle , Cattle Diseases/prevention & control , Diarrhea/veterinary , Farmers/psychology , Female , Humans , Motivation
2.
Nat Sustain ; 2(9): 834-840, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31535037

ABSTRACT

Movements are essential for the economic success of the livestock industry. These movements however bring the risk of long-range spread of infection, potentially bringing infection to previously disease-free areas where subsequent localised transmission can be devastating. Mechanistic predictive models usually consider controls that minimize the number of livestock affected without considering other costs of an ongoing epidemic. However, it is more appropriate to consider the economic burden, as movement restrictions have major consequences for the economic revenue of farms. Using mechanistic models of foot-and-mouth disease (FMD), bluetongue virus (BTV) and bovine tuberculosis (bTB) in the UK, we contrast the economically optimal control strategies for these diseases. We show that for FMD, the optimal strategy is to ban movements in a small radius around infected farms; the balance between disease control and maintaining 'business as usual' varies between regions. For BTV and bTB, we find that the cost of any movement ban is more than the epidemiological benefits due to the low within-farm prevalence and slow rate of disease spread. This work suggests that movement controls need to be carefully matched to the epidemiological and economic consequences of the disease, and optimal movement bans are often far shorter than existing policy.

3.
Philos Trans R Soc Lond B Biol Sci ; 374(1776): 20180277, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31104604

ABSTRACT

The number of all possible epidemics of a given infectious disease that could occur on a given landscape is large for systems of real-world complexity. Furthermore, there is no guarantee that the control actions that are optimal, on average, over all possible epidemics are also best for each possible epidemic. Reinforcement learning (RL) and Monte Carlo control have been used to develop machine-readable context-dependent solutions for complex problems with many possible realizations ranging from video-games to the game of Go. RL could be a valuable tool to generate context-dependent policies for outbreak response, though translating the resulting policies into simple rules that can be read and interpreted by human decision-makers remains a challenge. Here we illustrate the application of RL to the development of context-dependent outbreak response policies to minimize outbreaks of foot-and-mouth disease. We show that control based on the resulting context-dependent policies, which adapt interventions to the specific outbreak, result in smaller outbreaks than static policies. We further illustrate two approaches for translating the complex machine-readable policies into simple heuristics that can be evaluated by human decision-makers. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.


Subject(s)
Communicable Disease Control/methods , Communicable Disease Control/standards , Disease Outbreaks/prevention & control , Machine Learning , Animals , Communicable Diseases/epidemiology , Decision Making , Forecasting , Humans , Models, Biological
4.
Transbound Emerg Dis ; 64(3): 716-728, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26576514

ABSTRACT

Foot-and-mouth disease virus (FMDV) threatens animal health and leads to considerable economic losses worldwide. Progress towards minimizing both veterinary and financial impact of the disease will be made with targeted disease control policies. To move towards targeted control, specific targets and detailed control strategies must be defined. One approach for identifying targets is to use mathematical and simulation models quantified with accurate and fine-scale data to design and evaluate alternative control policies. Nevertheless, published models of FMDV vary in modelling techniques and resolution of data incorporated. In order to determine which models and data sources contain enough detail to represent realistic control policy alternatives, we performed a systematic literature review of all FMDV dynamical models that use host data, disease data or both data types. For the purpose of evaluating modelling methodology, we classified models by control strategy represented, resolution of models and data, and location modelled. We found that modelling methodology has been well developed to the point where multiple methods are available to represent detailed and contact-specific transmission and targeted control. However, detailed host and disease data needed to quantify these models are only available from a few outbreaks. To address existing challenges in data collection, novel data sources should be considered and integrated into models of FMDV transmission and control. We suggest modelling multiple endemic areas to advance local control and global control and better understand FMDV transmission dynamics. With incorporation of additional data, models can assist with both the design of targeted control and identification of transmission drivers across geographic boundaries.


Subject(s)
Disease Outbreaks/veterinary , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease/epidemiology , Models, Biological , Animals
SELECTION OF CITATIONS
SEARCH DETAIL