Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2787: 107-122, 2024.
Article in English | MEDLINE | ID: mdl-38656485

ABSTRACT

Genetic diversity refers to the variety of genetic traits within a population or a species. It is an essential aspect of both plant ecology and plant breeding because it contributes to the adaptability, survival, and resilience of populations in changing environments. This chapter outlines a pipeline for estimating genetic diversity statistics from reduced representation or whole genome sequencing data. The pipeline involves obtaining DNA sequence reads, mapping the corresponding reads to a reference genome, calling variants from the alignments, and generating an unbiased estimation of nucleotide diversity and divergence between populations. The pipeline is suitable for single-end Illumina reads and can be adjusted for paired-end reads. The resulting pipeline provides a comprehensive approach for aligning and analyzing sequencing data to estimate genetic diversity.


Subject(s)
Genetic Variation , Genome, Plant , Plants , Plants/genetics , Software , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods , Genomics/methods
2.
Methods Mol Biol ; 2787: 123-139, 2024.
Article in English | MEDLINE | ID: mdl-38656486

ABSTRACT

Treatment of plants with chemical mutagens results primarily in the production of novel single nucleotide variants. Mutagenesis is a mostly random process and as such plants derived from mutagenesis of different seeds or in vitro material are expected to accumulate different mutations. An important step in the creation of a mutant population for forward or reverse genetics is the choice of treatment conditions (e.g., dosage) such that sufficient mutations accumulate while not adversely affecting propagation of the plant. DNA sequencing provides a quick method to evaluate the effect of different treatment conditions and their effect on the density and spectrum of accumulated mutations. Whole genome sequencing or reduced representation sequencing is carried out followed by mapping to a reference genome and production of a Variant Call Format (VCF) file. We provide here a method for generating a multi-sample VCF from mutagenized plants and describe a new tool to streamline the process of recovering unique induced mutations and determining their possible effect on gene function.


Subject(s)
Genome, Plant , Mutagenesis , Mutation , Seeds , Whole Genome Sequencing , Seeds/genetics , Seeds/growth & development , Whole Genome Sequencing/methods , Mutagens/toxicity , Mutagens/pharmacology , Plants/genetics , High-Throughput Nucleotide Sequencing/methods
3.
Methods Mol Biol ; 2787: 141-152, 2024.
Article in English | MEDLINE | ID: mdl-38656487

ABSTRACT

Induced mutations have been an important tool for plant breeding and functional genomics for more than 80 years. Novel mutations can be induced by treating seed or other plant cells with chemical mutagens or ionizing radiation. The majority of released mutant crop varieties were developed using ionizing radiation. This has been shown to create a variety of different DNA lesions including large (e.g., >=10,000 bps) copy number variations (CNV). Detection of induced DNA lesions from whole genome sequence data is useful for choosing a mutagen dosage prior to committing resources to develop a large mutant population for forward or reverse-genetic screening. Here I provide a method for detecting large induced CNV from mutant plants that utilizes a new tool to streamline the process of obtaining read coverage directly from BAM files, comparing non-mutagenized controls and mutagenized samples, and plotting the results for visual evaluation. Example data is provided from low coverage sequence data from gamma-irradiated vegetatively propagated triploid banana.


Subject(s)
DNA Copy Number Variations , Genome, Plant , Musa/genetics , Mutation , High-Throughput Nucleotide Sequencing/methods , Mutagens , Plant Breeding/methods , Sequence Analysis, DNA/methods
4.
Front Plant Sci ; 14: 1160695, 2023.
Article in English | MEDLINE | ID: mdl-37674734

ABSTRACT

Since its introduction in 2000, the TILLING strategy has been widely used in plant research to create novel genetic diversity. TILLING is based on chemical or physical mutagenesis followed by the rapid identification of mutations within genes of interest. TILLING mutants may be used for functional analysis of genes and being nontransgenic, they may be directly used in pre-breeding programs. Nevertheless, classical mutagenesis is a random process, giving rise to mutations all over the genome. Therefore TILLING mutants carry background mutations, some of which may affect the phenotype and should be eliminated, which is often time-consuming. Recently, new strategies of targeted genome editing, including CRISPR/Cas9-based methods, have been developed and optimized for many plant species. These methods precisely target only genes of interest and produce very few off-targets. Thus, the question arises: is it the end of TILLING era in plant studies? In this review, we recap the basics of the TILLING strategy, summarize the current status of plant TILLING research and present recent TILLING achievements. Based on these reports, we conclude that TILLING still plays an important role in plant research as a valuable tool for generating genetic variation for genomics and breeding projects.

5.
Plants (Basel) ; 11(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501272

ABSTRACT

Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice. A mutant population of a tropical upland rice, Oryza sativa L., was generated and propagated via self-fertilization for seven generations. Five dosages ranging from 75 Gy to 600 Gy in both X-ray and gamma-irradiated material were applied. In the process of a forward genetic screens, 11 unique rice mutant lines showing phenotypic variation were selected for mutation analysis via whole-genome sequencing. Thousands of candidate mutations were recovered in each mutant with single base substitutions being the most common, followed by small indels and structural variants. Higher dosages resulted in a higher accumulation of mutations in gamma-irradiated material, but not in X-ray-treated plants. The in vivo role of all annotated rice genes is yet to be directly investigated. The ability to induce a high density of single nucleotide and structural variants through mutagenesis will likely remain an important approach for functional genomics and breeding.

6.
Methods Mol Biol ; 2484: 143-159, 2022.
Article in English | MEDLINE | ID: mdl-35461451

ABSTRACT

Induced mutations have been used to facilitate plant breeding for more than 80 years. Success requires the development of a mutant population and methods to evaluate that population. In this protocol we provide methods for the development of a chickpea mutant population using gamma irradiation, and low-cost methods for the molecular characterization of the mutant population. Specifically, this chapter provides detailed methods for (1) mutation induction by gamma rays and determination of LD50 and RD50, (2) phenotypic assessment of the M2 generation, (3) low-cost extraction of genomic DNA, and (4) identification of induced mutations using low-cost agarose-gel based TILLING. The methods are low-cost and designed to be applicable in most research settings.


Subject(s)
Cicer , Cicer/genetics , Gamma Rays/adverse effects , Mutation , Plant Breeding
7.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34769285

ABSTRACT

To face the rapidly growing world human population, an increase in agricultural productivity and production is necessary to overcome the enhanced food demand [...].


Subject(s)
Crops, Agricultural/growth & development , Genomics/methods , Plant Proteins/genetics , Crops, Agricultural/genetics , Gene Expression Regulation, Plant , Plant Breeding , Polymorphism, Single Nucleotide
8.
Front Plant Sci ; 12: 795091, 2021.
Article in English | MEDLINE | ID: mdl-35154186

ABSTRACT

Alkaloids are part of a structurally diverse group of over 21,000 cyclic nitrogen-containing secondary metabolites that are found in over 20% of plant species. Lupinus albus are naturally containing quinolizidine alkaloid (QA) legumes, with wild accessions containing up to 11% of QA in seeds. Notwithstanding their clear advantages as a natural protecting system, lupin-breeding programs have selected against QA content without proper understanding of quinolizidine alkaloid biosynthetic pathway. This review summarizes the current status in this field, with focus on the utilization of natural mutations such as the one contained in pauper locus, and more recently the development of molecular markers, which along with the advent of sequencing technology, have facilitated the identification of candidate genes located in the pauper region. New insights for future research are provided, including the utilization of differentially expressed genes located on the pauper locus, as candidates for genome editing. Identification of the main genes involved in the biosynthesis of QA will enable precision breeding of low-alkaloid, high nutrition white lupin. This is important as plant based high quality protein for food and feed is an essential for sustainable agricultural productivity.

9.
BMC Genomics ; 21(1): 845, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256606

ABSTRACT

BACKGROUND: Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of DNA variations is an important step in the efficient use of these resources. While technologies have improved and costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple samples from an accession need to be evaluated to recover available alleles. To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye (Secale cereale L.). RESULTS: Using the amplicon sequencing approach 95 rye accessions of different improvement status and worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were recovered including those found only in a low percentage of seed. CONCLUSIONS: We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele diversity, and recovering previously hidden variation. A large extent of within-population heterogeneity revealed in the study provides an important point for consideration during rye germplasm conservation and utilization efforts.


Subject(s)
Plant Breeding , Secale , Alleles , Genetic Variation , Phenotype , Secale/genetics , Seeds
10.
G3 (Bethesda) ; 9(8): 2657-2666, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31213514

ABSTRACT

Improvements to massively parallel sequencing have allowed the routine recovery of natural and induced sequence variants. A broad range of biological disciplines have benefited from this, ranging from plant breeding to cancer research. The need for high sequence coverage to accurately recover single nucleotide variants and small insertions and deletions limits the applicability of whole genome approaches. This is especially true in organisms with a large genome size or for applications requiring the screening of thousands of individuals, such as the reverse-genetic technique known as TILLING. Using PCR to target and sequence chosen genomic regions provides an attractive alternative as the vast reduction in interrogated bases means that sample size can be dramatically increased through amplicon multiplexing and multi-dimensional sample pooling while maintaining suitable coverage for recovery of small mutations. Direct sequencing of PCR products is limited, however, due to limitations in read lengths of many next generation sequencers. In the present study we show the optimization and use of ultrasonication for the simultaneous fragmentation of multiplexed PCR amplicons for TILLING highly pooled samples. Sequencing performance was evaluated in a total of 32 pooled PCR products produced from 4096 chemically mutagenized Hordeum vulgare DNAs pooled in three dimensions. Evaluation of read coverage and base quality across amplicons suggests this approach is suitable for high-throughput TILLING and other applications employing highly pooled complex sampling schemes. Induced mutations previously identified in a traditional TILLING screen were recovered in this dataset further supporting the efficacy of the approach.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Coffea/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Mutation , Polymerase Chain Reaction , Polymorphism, Single Nucleotide
11.
Front Plant Sci ; 9: 1568, 2018.
Article in English | MEDLINE | ID: mdl-30429862

ABSTRACT

In order to increase genetic variability for chickpea improvement, the Kabuli genotype, variety Ghab4, was treated with 280 Grays of gamma rays (Cobalt 60). Field characterization began with the M2 generation. A total of 135 M2 families were sown in the field resulting in approximately 4,000 plants. Traits related to phenology (days to flowering, days to maturity), plant morphology of vegetative parts (plant height, height of first pod, number of primary branches per plant) and yield (number of seeds per pod, total number of pods per plant, total number of seeds per plant, seed yield and hundred seed weight) were recorded and analyzed to evaluate genetic variability. An evaluation of the efficacy of low-cost TILLING (Targeting Induced Local Lesions IN Genomes) to discover mutations in the M2 generation was undertaken. Mutation screening focused on genes involved in resistance to two important diseases of chickpea; Ascochyta blight (AB) and Fusarium wilt (FW), as well as genes responsible for early flowering. Analysis of variance showed a highly significant difference among mutant families for all studied traits. The higher estimates of genetic parameters (genotypic and phenotypic coefficient of variation, broad sense heritability and genetic advance) were recorded for number of seeds per plant and yield. Total yield was highly significant and positively correlated with number of pods and seeds per plant. Path analysis revealed that the total number of seeds per plant had the highest positive direct effect followed by hundred seed weight parameter. One cluster from nine exhibited the highest mean values for total number of pods and seeds per plant as well as yield per plant. According to Dunnett's test, 37 M2 families superior to the control were determined for five agronomical traits. Pilot experiments with low-cost TILLING show that the seed stock used for mutagenesis is homogeneous and that small mutations do not predominate at the dosage used.

12.
PLoS One ; 13(8): e0201918, 2018.
Article in English | MEDLINE | ID: mdl-30102729

ABSTRACT

Wheat is a staple food crop of many countries. Improving resilience to biotic and abiotic stresses remain key breeding targets. Among these, rust diseases are the most detrimental in terms of depressing wheat production. In the present study, chemical mutagenesis was used to induce mutations in the wheat variety NN-Gandum-1. This cultivar is moderately resistant to leaf and yellow rust. The aim of mutagenesis was to improve resistance to the disease as well as to study function of genes conferring resistance to the disease. In the present investigation, a 0.8% EMS dose was found optimum for supporting 45-55% germination of NN-Gandum-1. A total of 3,634 M2 fertile plants were produced from each of the M1 plant. Out of these, 33 (0.91%) and 20 plants (0.55%) showed absolute resistance to leaf and yellow rust, respectively. While 126 (3.46%) and 127 plants (3.49%) exhibited high susceptibility to the leaf and yellow rust, respectively. In the M4 generation, a total of 11 M4 lines (nine absolute resistant and two highly susceptible) and one wild type were selected for NGS-based exome capture assay. A total of 104,779 SNPs were identified that were randomly distributed throughout the wheat sub genomes (A, B and D). Induced mutations in intronic sequences predominated. The highest total number of SNPs detected in this assay were mapped to chr.2B (14,273 SNPs), which contains the highest number of targeted base pairs in the assay. The average mutation density across all regions interrogated was estimated to be one mutation per 20.91 Mb. The highest mutation frequency was found in chr.2D (1/11.7 kb) and the lowest in chr.7D (1/353.4 kb). Out of the detected mutations, 101 SNPs were filtered using analysis criteria aimed to enrich for mutations that may affect gene function. Out of these, one putative SNP detected in Lr21 were selected for further analysis. The SNP identified in chimeric allele (Lr21) of a resistant mutant (N1-252) was located in a NBS domain of chr.1BS at 3.4 Mb position. Through computational analysis, it was demonstrated that this identified SNP causes a substitution of glutamic acid with alanine, resulting in a predicted altered protein structure. This mutation, therefore, is a candidate for contributing to the resistance phenotype in the mutant line. Based on this work, we conclude that the wheat mutant resource developed is useful as a source of novel genetic variation for forward-genetic screens and also as a useful tool for gaining insights into the important biological circuits of different traits of complex genomes like wheat.


Subject(s)
Exome , Genome, Plant , Genomics , Mutation , Polyploidy , Triticum/genetics , Disease Resistance/genetics , Genetics, Population , Genomics/methods , Microsatellite Repeats , Mutagenesis , Phenotype , Plant Breeding , Plant Diseases/genetics , Polymorphism, Single Nucleotide
13.
Adv Biochem Eng Biotechnol ; 164: 139-160, 2018.
Article in English | MEDLINE | ID: mdl-29516116

ABSTRACT

Gene space: the final frontier in plant functional genomics. These are the voyages of TILLING, the reverse-genetics strategy that sought to boldly go where no-one had gone before by combining high-density chemical mutagenesis with high-throughput mutation discovery. Its 18-year mission has been to explore new technologies such as next generation sequencing and to seek out new strategies like in silico databases of catalogued EMS-induced mutations from entire mutant plant populations. This chapter is a clip show highlighting key milestones in the development of TILLING. Use of different technologies for the discovery of induced mutations, establishment of TILLING in different plant species, what has been learned about the effect of chemical mutagens on the plant genome, development of exome capture sequencing in wheat, and a look to the future of reverse-genetics with targeted genome editing are discussed. Graphical Abstract.


Subject(s)
Genome, Plant , Mutagenesis , Reverse Genetics , High-Throughput Nucleotide Sequencing , Mutation , Reverse Genetics/trends , Triticum/genetics
14.
Plant Biotechnol J ; 2018 Feb 24.
Article in English | MEDLINE | ID: mdl-29476650

ABSTRACT

Traditional breeding methods are hindered in bananas due to the fact that major cultivars are sterile, parthenocarpic, triploid and thus clonally propagated. This has resulted in a narrow genetic base and limited resilience to biotic and abiotic stresses. Mutagenesis of in vitro propagated bananas is one method to introduce novel alleles and broaden genetic diversity. We previously established a method for the induction and recovery of single nucleotide mutations generated with the chemical mutagen EMS. However, officially released mutant banana varieties have been created using gamma rays, a mutagen that can produce large genomic insertions and deletions (indels). Such dosage mutations may be important for generating observable phenotypes in polyploids. In this study, we establish a low-coverage whole-genome sequencing approach in triploid bananas to recover large genomic indels caused by treatment with gamma irradiation. We first evaluated the commercially released mutant cultivar 'Novaria' and found that it harbours multiple predicted deletions, ranging from 0.3 to 3.8 million base pairs (Mbp). In total, predicted deletions span 189 coding regions. To evaluate the feasibility of generating and maintaining new mutations, we developed a pipeline for mutagenesis and screening for copy number variation in Cavendish bananas using the cultivar 'Williams'. Putative mutations were recovered in 70% of lines treated with 20 Gy and 60% of the lines treated with 40 Gy. While deletion events predominate, insertions were identified in 20 Gy-treated material. Based on these results, we believe this approach can be scaled up to support large breeding projects.

15.
Curr Protoc Plant Biol ; 1(4): 617-635, 2016 Dec.
Article in English | MEDLINE | ID: mdl-31725963

ABSTRACT

Chemical mutagenesis provides an inexpensive and straightforward way to generate a high density of novel nucleotide diversity in the genomes of plants and animals. Mutagenesis therefore can be used for functional genomic studies and also for plant breeding. The most commonly used chemical mutagen in plants is ethyl methanesulfonate (EMS). EMS has been shown to induce primarily single base point mutations. Hundreds to thousands of heritable mutations can be induced in a single plant line. A relatively small number of plants, therefore, are needed to produce populations harboring deleterious alleles in most genes. EMS mutagenized plant populations can be screened phenotypically (forward-genetics), or mutations in genes can be identified in advance of phenotypic characterization (reverse-genetics). Reverse-genetics using chemically induced mutations is known as Targeting Induced Local Lesions IN Genomes (TILLING). This unit gives information on EMS treatment of seed and vegetative propagules. © 2016 by John Wiley & Sons, Inc.

16.
Biotechnol J ; 10(4): 536-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25511658

ABSTRACT

Increasing economic interest in Jatropha curcas requires a major research focus on the genetic background and geographic origin of this non-edible biofuel crop. To determine the worldwide genetic structure of this species, amplified fragment length polymorphisms, inter simple sequence repeats, and novel single nucleotide polymorphisms (SNPs) were employed for a large collection of 907 J. curcas accessions and related species (RS) from three continents, 15 countries and 53 regions. PCoA, phenogram, and cophenetic analyses separated RS from two J. curcas groups. Accessions from Mexico, Bolivia, Paraguay, Kenya, and Ethiopia with unknown origins were found in both groups. In general, there was a considerable overlap between individuals from different regions and countries. The Bayesian approach using STRUCTURE demonstrated two groups with a low genetic variation. Analysis of molecular varience revealed significant variation among individuals within populations. SNPs found by in silico analyses of Δ12 fatty acid desaturase indicated possible changes in gene expression and thus in fatty acid profiles. SNP variation was higher in the curcin gene compared to genes involved in oil production. Novel SNPs allowed separating toxic, non-toxic, and Mexican accessions. The present study confirms that human activities had a major influence on the genetic diversity of J. curcas, not only because of domestication, but also because of biased selection.


Subject(s)
Jatropha/classification , Jatropha/genetics , Africa , Genetic Variation , South America
17.
Methods Mol Biol ; 1099: 77-95, 2014.
Article in English | MEDLINE | ID: mdl-24243197

ABSTRACT

Molecular techniques have created the opportunity for great advances in plant mutation genetics and the science of mutation breeding. The powerful targeted induced local lesions in genomes (TILLING) technique has introduced the possibility of reverse genetics-the ability to screen for mutations at the DNA level prior to assessing phenotype. Fundamental to TILLING is the induction of mutant populations (or alternatively, the identification of mutants in the environment); and mutation induction requires an understanding and assessment of the appropriate mutagen dose required. The techniques of mutation induction, dose optimization, and TILLING are explained.


Subject(s)
DNA Mutational Analysis/methods , Mutation , Plants/genetics , DNA, Plant/genetics , Genome, Plant , Molecular Biology/methods , Mutagenesis/drug effects , Mutagenesis/radiation effects
18.
Plant Methods ; 9(1): 43, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24220637

ABSTRACT

BACKGROUND: Doubled haploidy is a fundamental tool in plant breeding as it provides the fastest way to generate populations of meiotic recombinants in a genetically fixed state. A wide range of methods has been developed to produce doubled haploid (DH) plants and recent advances promise efficient DH production in otherwise recalcitrant species. Since the cellular origin of the plants produced is not always certain, rapid screening techniques are needed to validate that the produced individuals are indeed homozygous and genetically distinct from each other. Ideal methods are easily implemented across species and in crops where whole genome sequence and marker resources are limited. RESULTS: We have adapted enzymatic mismatch cleavage techniques commonly used for TILLING (Targeting Induced Local Lesions IN Genomes) for the evaluation of heterozygosity in parental, F1 and putative DH plants. We used barley as a model crop and tested 26 amplicons previously developed for TILLING. Experiments were performed using self-extracted single-strand-specific nuclease and standard native agarose gels. Eleven of the twenty-six tested primers allowed unambiguous assignment of heterozygosity in material from F1 crosses and loss of heterozygosity in the DH plants. Through parallel testing of previously developed Simple Sequence Repeat (SSR) markers, we show that 3/32 SSR markers were suitable for screening. This suggests that enzymatic mismatch cleavage approaches can be more efficient than SSR based screening, even in species with well-developed markers. CONCLUSIONS: Enzymatic mismatch cleavage has been applied for mutation discovery in many plant species, including those with little or no available genomic DNA sequence information. Here, we show that the same methods provide an efficient system to screen for the production of DH material without the need of specialized equipment. This gene target based approach further allows discovery of novel nucleotide polymorphisms in candidate genes in the parental lines.

19.
Methods Mol Biol ; 956: 39-56, 2013.
Article in English | MEDLINE | ID: mdl-23135843

ABSTRACT

Mutagenesis is frequently used to test gene function and to aid in crop improvement. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetic strategy first developed to identify induced point mutations in Arabidopsis. This general strategy has since been applied to many plant and animal species. Here, we describe a protocol for high-throughput TILLING in rice. Gene segments are amplified using fluorescently tagged primers, and products are denatured and reannealed to form heteroduplexes between the mutated and wild-type sequences. These heteroduplexes are substrates for cleavage by single-strand-specific nucleases. Following cleavage, products are analyzed on denaturing polyacrylamide gels using the LI-COR DNA analyzer system. Several rice TILLING populations have been described, and a public mutation screening service is now available. The basic methods used for TILLING can be adapted for the discovery and cataloguing of natural nucleotide variation in populations, a strategy known as Ecotilling, which was first used to study genetic diversity among Arabidopsis ecotypes, and has since been applied to crop plants.


Subject(s)
Ecotype , Mutagenesis , Oryza/genetics , Arabidopsis/genetics , Genetic Variation , Genome, Plant
20.
Plant Biotechnol J ; 10(9): 1056-66, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22928630

ABSTRACT

Mutation discovery technologies have enabled the development of reverse genetics for many plant species and allowed sophisticated evaluation of the consequences of mutagenesis. Such methods are relatively straightforward for seed-propagated plants. To develop a platform suitable for vegetatively propagated species, we treated isolated banana shoot apical meristems with the chemical mutagen ethyl methanesulphonate, recovered plantlets and screened for induced mutations. A high density of GC-AT transition mutations were recovered, similar to that reported in seed-propagated polyploids. Through analysis of the inheritance of mutations, we observed that genotypically heterogeneous stem cells resulting from mutagenic treatment are rapidly sorted to fix a single genotype in the meristem. Further, mutant genotypes are stably inherited in subsequent generations. Evaluation of natural nucleotide variation showed the accumulation of potentially deleterious heterozygous alleles, suggesting that mutation induction may uncover recessive traits. This work therefore provides genotypic insights into the fate of totipotent cells after mutagenesis and suggests rapid approaches for mutation-based functional genomics and improvement of vegetatively propagated crops.


Subject(s)
Musa/genetics , Point Mutation , Ethyl Methanesulfonate , Genotype , Inheritance Patterns , Musa/growth & development , Mutagenesis , Mutation Rate , Polymorphism, Single Nucleotide , Reproduction, Asexual
SELECTION OF CITATIONS
SEARCH DETAIL
...