Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 116(Pt 19): 3971-84, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-12953058

ABSTRACT

The sequential binding of the origin recognition complex (ORC), Cdc6p and the minichromosome maintenance proteins (MCM2-7) mediates replication competence at eukaryotic origins of DNA replication. The latent origin of Epstein-Barr virus, oriP, is a viral origin known to recruit ORC. OriP also binds EBNA1, a virally encoded protein that lacks any activity predicted to be required for replication initiation. Here, we used chromatin immunoprecipitation and chromatin binding to compare the cell-cycle-dependent binding of pre-RC components and EBNA1 to oriP and to global cellular chromatin. Prereplicative-complex components such as the Mcm2p-Mcm7p proteins and HsOrc1p are regulated in a cell-cycle-dependent fashion, whereas other HsOrc subunits and EBNA1 remain constantly bound. In addition, HsOrc1p becomes sensitive to the 26S proteasome after release from DNA during S phase. These results show that the complex protein-DNA dynamics at the viral oriP are synchronized with the cell division cycle. Chromatin-binding and chromatin-immunoprecipitation experiments on G0 arrested cells indicated that the ORC core complex (ORC2-5) and EBNA1 remain bound to chromatin and oriP. HsOrc6p and the MCM2-7 complex are released in resting cells. HsOrc1p is partly liberated from chromatin. Our data suggest that origins remain marked in resting cells by the ORC core complex to ensure a rapid and regulated reentry into the cell cycle. These findings indicate that HsOrc is a dynamic complex and that its DNA binding activity is regulated differently in the various stages of the cell cycle.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/physiology , Animals , Cell Cycle , Cells, Cultured , Chromatin/virology , Flow Cytometry , Humans , Origin Recognition Complex , Plasmids , Protein Binding , Resting Phase, Cell Cycle/physiology , S Phase/physiology , Viral Proteins/metabolism , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...