Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Tree Physiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769932

ABSTRACT

Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains whether increased frequency of drought or defoliation threatens this internal nitrogen recycling strategy. We submitted 8-year-old beech trees to two years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the 2nd year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared to Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.

2.
Front Plant Sci ; 14: 1288070, 2023.
Article in English | MEDLINE | ID: mdl-38053772

ABSTRACT

In mature symbiotic root nodules, differentiated rhizobia fix atmospheric dinitrogen and provide ammonium to fulfill the plant nitrogen (N) demand. The plant enables this process by providing photosynthates to the nodules. The symbiosis is adjusted to the whole plant N demand thanks to systemic N signaling controlling nodule development. Symbiotic plants under N deficit stimulate nodule expansion and activate nodule senescence under N satiety. Besides, nodules are highly sensitive to drought. Here, we used split-root systems to characterize the systemic responses of symbiotic plants to a localized osmotic stress. We showed that polyéthylène glycol (PEG) application rapidly inhibited the symbiotic dinitrogen fixation activity of nodules locally exposed to the treatment, resulting to the N limitation of the plant supplied exclusively by symbiotic dinitrogen fixation. The localized PEG treatment triggered systemic signaling stimulating nodule development in the distant untreated roots. This response was associated with an enhancement of the sucrose allocation. Our analyses showed that transcriptomic reprogramming associated with PEG and N deficit systemic signaling(s) shared many targets transcripts. Altogether, our study suggests that systemic N signaling is a component of the adaptation of the symbiotic plant to the local variations of its edaphic environment.

3.
J Exp Bot ; 74(14): 4244-4258, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37185665

ABSTRACT

In Arabidopsis thaliana, root high-affinity nitrate (NO3-) uptake depends mainly on NRT2.1, 2.4, and 2.5, which are repressed by high NO3- supply at the transcript level. For NRT2.1, this regulation is due to the action of (i) feedback down-regulation by N metabolites and (ii) repression by NO3- itself mediated by the transceptor NRT1.1(NPF6.3). However, for NRT2.4 and NRT2.5, the signalling pathway(s) remain unknown as do the molecular elements involved. Here we show that unlike NRT2.1, NRT2.4 and NRT2.5 are not induced in an NO3- reductase mutant but are up-regulated following replacement of NO3- by ammonium (NH4+) as the N source. Moreover, increasing the NO3- concentration in a mixed nutrient solution with constant NH4+ concentration results in a gradual repression of NRT2.4 and NRT2.5, which is suppressed in an nrt1.1 mutant. This indicates that NRT2.4 and NRT2.5 are subjected to repression by NRT1.1-mediated NO3- sensing, and not to feedback repression by reduced N metabolites. We further show that key regulators of NRT2 transporters, such as HHO1, HRS1, PP2C, LBD39, BT1, and BT2, are also regulated by NRT1.1-mediated NO3- sensing, and that several of them are involved in NO3- repression of NRT2.1, NRT2.4, and NRT2.5. Finally, we provide evidence that it is the phosphorylated form of NRT1.1 at the T101 residue, which is most active in triggering the NRT1.1-mediated NO3- regulation of all these genes. Altogether, these data led us to propose a regulatory model for high-affinity NO3- uptake in Arabidopsis, highlighting several NO3- transduction cascades downstream of the phosphorylated form of the NRT1.1 transceptor.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Nitrates/metabolism , Plant Proteins/metabolism , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Plant Roots/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
4.
Front Plant Sci ; 13: 836488, 2022.
Article in English | MEDLINE | ID: mdl-35668791

ABSTRACT

The trait-based approach in plant ecology aims at understanding and classifying the diversity of ecological strategies by comparing plant morphology and physiology across organisms. The major drawback of the approach is that the time and financial cost of measuring the traits on many individuals and environments can be prohibitive. We show that combining near-infrared spectroscopy (NIRS) with deep learning resolves this limitation by quickly, non-destructively, and accurately measuring a suite of traits, including plant morphology, chemistry, and metabolism. Such an approach also allows to position plants within the well-known CSR triangle that depicts the diversity of plant ecological strategies. The processing of NIRS through deep learning identifies the effect of growth conditions on trait values, an issue that plagues traditional statistical approaches. Together, the coupling of NIRS and deep learning is a promising high-throughput approach to capture a range of ecological information on plant diversity and functioning and can accelerate the creation of extensive trait databases.

5.
J Exp Bot ; 73(11): 3569-3583, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35304891

ABSTRACT

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs. The cost of a larger root system did not impact shoot biomass. Greater biomass production could be achieved through increased root length or through specific root hair characteristics. A greater number of root hairs may provide a low-resistance pathway under elevated N conditions, while root hair length may enhance root zone exploration under low N conditions. The variability of N uptake and the expression levels of genes encoding nitrate transporters were measured. A positive correlation was found between root system size and high-affinity nitrate uptake, emphasizing the benefits of an exploratory root organ in N acquisition. The expression levels of NRT1.2/NPF4.6, NRT2.2, and NRT1.5/NPF7.3 negatively correlated with some root morphological traits. Such basic knowledge in Arabidopsis demonstrates the importance of root phenes to improve N acquisition and paves the way to design eudicot ideotypes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biomass , Nitrates/metabolism , Nitrogen Oxides/metabolism , Plant Roots/metabolism
6.
Plant Physiol ; 186(1): 696-714, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33582801

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.


Subject(s)
Anion Transport Proteins/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Carbon/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Anion Transport Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Genome-Wide Association Study
7.
New Phytol ; 228(3): 1038-1054, 2020 11.
Article in English | MEDLINE | ID: mdl-32463943

ABSTRACT

In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing. To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. This revealed an essential sequence for NRT2.1 activity, located between the residues 494 and 513. Using a phospho-proteomic approach, we found that this sequence contains one phosphorylation site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins. Finally, the relative level of serine 501 phosphorylation was found to be increased by ammonium nitrate in wild-type plants, leading to the inactivation of NRT2.1 and to a decrease in high affinity nitrate transport into roots. Altogether, these observations reveal a new and essential mechanism for the regulation of NRT2.1 activity.


Subject(s)
Anion Transport Proteins , Arabidopsis Proteins , Arabidopsis , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Nitrates/metabolism , Phosphorylation , Plant Proteins/metabolism , Plant Roots/metabolism , Proteomics
8.
J Exp Bot ; 71(16): 5039-5052, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32386062

ABSTRACT

In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4+ influx that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acquisition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly understood. We have investigated the role of systemic signaling of whole-plant N demand on the mature N2-fixing nodules of the model symbiotic association Medicago truncatula/Sinorhizobium using split-root systems. The whole-plant N-satiety signaling rapidly triggers reductions of both N2 fixation and allocation of sugars to the nodule. These responses are associated with the induction of nodule senescence and the activation of plant defenses against microbes, as well as variations in sugars transport and nodule metabolism. The whole-plant N-deficit responses mirror these changes: a rapid increase of sucrose allocation in response to N-deficit is associated with a stimulation of nodule functioning and development resulting in nodule expansion in the long term. Physiological, transcriptomic, and metabolomic data together provide evidence for strong integration of symbiotic nodules into whole-plant nitrogen demand by systemic signaling and suggest roles for sugar allocation and hormones in the signaling mechanisms.


Subject(s)
Medicago truncatula , Root Nodules, Plant , Nitrogen , Nitrogen Fixation , Symbiosis
9.
Plant Physiol ; 174(2): 1216-1225, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28381501

ABSTRACT

Heat shock (HS) is known to have a profound impact on gene expression at different levels, such as inhibition of protein synthesis, in which HS blocks translation initiation and induces the sequestration of mRNAs into stress granules (SGs) or P-bodies for storage and/or decay. SGs prevent the degradation of the stored mRNAs, which can be reengaged into translation in the recovery period. However, little is known on the mRNAs stored during the stress, how these mRNAs are released from SGs afterward, and what the functional importance is of this process. In this work, we report that Arabidopsis HEAT SHOCK PROTEIN101 (HSP101) knockout mutant (hsp101) presented a defect in translation recovery and SG dissociation after HS Using RNA sequencing and RNA immunoprecipitation approaches, we show that mRNAs encoding ribosomal proteins (RPs) were preferentially stored during HS and that these mRNAs were released and translated in an HSP101-dependent manner during recovery. By 15N incorporation and polysome profile analyses, we observed that these released mRNAs contributed to the production of new ribosomes to enhance translation. We propose that, after HS, HSP101 is required for the efficient release of RP mRNAs from SGs resulting in a rapid restoration of the translation machinery by producing new RPs.


Subject(s)
Heat-Shock Response/genetics , Plant Proteins/metabolism , Ribosomal Proteins/genetics , Transcription Factors/metabolism , Cytoplasmic Granules/metabolism , Gene Expression Regulation, Plant , Gene Knockout Techniques , Mutation/genetics , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Transcription, Genetic
10.
Plant Cell Physiol ; 57(4): 733-42, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26823528

ABSTRACT

The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions.


Subject(s)
Anion Transport Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nitrates/metabolism , Plant Roots/physiology , Anion Transport Proteins/genetics , Aquaporins/genetics , Aquaporins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Water/metabolism
11.
Sci Signal ; 8(375): ra43, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25943353

ABSTRACT

Living organisms sense and respond to changes in nutrient availability to cope with diverse environmental conditions. Nitrate (NO3-) is the main source of nitrogen for plants and is a major component in fertilizer. Unraveling the molecular basis of nitrate sensing and regulation of nitrate uptake should enable the development of strategies to increase the efficiency of nitrogen use and maximize nitrate uptake by plants, which would aid in reducing nitrate pollution. NPF6.3 (also known as NRT1.1), which functions as a nitrate sensor and transporter; the kinase CIPK23; and the calcium sensor CBL9 form a complex that is crucial for nitrate sensing in Arabidopsis thaliana. We identified two additional components that regulate nitrate transport, sensing, and signaling: the calcium sensor CBL1 and protein phosphatase 2C family member ABI2, which is inhibited by the stress-response hormone abscisic acid. Bimolecular fluorescence complementation assays and in vitro kinase assays revealed that ABI2 interacted with and dephosphorylated CIPK23 and CBL1. Coexpression studies in Xenopus oocytes and analysis of plants deficient in ABI2 indicated that ABI2 enhanced NPF6.3-dependent nitrate transport, nitrate sensing, and nitrate signaling. These findings suggest that ABI2 may functionally link stress-regulated control of growth and nitrate uptake and utilization, which are energy-expensive processes.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/metabolism , Nitrates/metabolism , Phosphoprotein Phosphatases/metabolism , Stress, Physiological , Abscisic Acid/genetics , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Biological Transport, Active/physiology , Phosphoprotein Phosphatases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Xenopus laevis
12.
Sci Rep ; 5: 7962, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25608465

ABSTRACT

Dipeptide (Leu-Leu) and nitrate transport activities of 26 Arabidopsis NPF (NRT1/PTR Family) proteins were screened in Saccharomyces cerevisiae and Xenopus laevis oocytes, respectively. Dipeptide transport activity has been confirmed for 2 already known dipeptide transporters (AtNPF8.1 and AtNPF8.3) but none of the other tested NPFs displays dipeptide transport. The nitrate transport screen resulted in the identification of two new nitrate transporters, AtNPF5.5 and AtNPF5.10. The localization of the mRNA coding for NPF5.5 demonstrates that it is the first NPF transporter reported to be expressed in Arabidopsis embryo. Two independent homozygous npf5.5 KO lines display reduced total nitrogen content in the embryo as compared to WT plants, demonstrating an effect of NPF5.5 function on the embryo nitrogen content. Finally, NPF5.5 gene produces two different transcripts (AtNPF5.5a and AtNPF5.5b) encoding proteins with different N-terminal ends. Both proteins are able to transport nitrate in xenopus oocytes.


Subject(s)
Anion Transport Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Arabidopsis/metabolism , Nitrogen/metabolism , Seeds/metabolism , Amino Acid Sequence , Animals , Anion Transport Proteins/chemistry , Anion Transport Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Biological Transport , Dipeptides/metabolism , Gene Expression Regulation, Plant , Gene Knockout Techniques , Molecular Sequence Data , Nitrate Transporters , Nitrates/metabolism , Oocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Xenopus
14.
New Phytol ; 195(2): 437-449, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22548481

ABSTRACT

• Responses of the Medicago truncatula-Sinorhizobium interaction to variation in N2-fixation of the bacterial partner were investigated. • Split-root systems were used to discriminate between local responses, at the site of interaction with bacteria, and systemic responses related to the whole plant N status. • The lack of N acquisition by a half-root system nodulated with a nonfixing rhizobium triggers a compensatory response enabling the other half-root system nodulated with N2-fixing partners to compensate the local N limitation. This response is mediated by a stimulation of nodule development (number and size) and involves a systemic signaling mechanism related to the plant N demand. In roots co-infected with poorly and highly efficient strains, partner choice for nodule formation was not modulated by the plant N status. However, the plant N demand induced preferential expansion of nodules formed with the most efficient partners when the symbiotic organs were functional. The response of nodule expansion was associated with the stimulation of symbiotic plant cell multiplication and of bacteroid differentiation. • A general model where local and systemic N signaling mechanisms modulate interactions between Medicago truncatula and its Sinorhizobium partners is proposed.


Subject(s)
Medicago truncatula/metabolism , Medicago truncatula/microbiology , Nitrogen/metabolism , Signal Transduction , Sinorhizobium/physiology , Symbiosis/physiology , Biomass , Medicago truncatula/drug effects , Nitrogen/deficiency , Nitrogen/pharmacology , Nitrogen Fixation/drug effects , Root Nodules, Plant/drug effects , Root Nodules, Plant/microbiology , Root Nodules, Plant/physiology , Signal Transduction/drug effects , Sinorhizobium/drug effects , Symbiosis/drug effects
15.
Plant Physiol ; 158(2): 1067-78, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22158677

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), the NRT2.1 gene codes for the main component of the root nitrate (NO(3)(-)) high-affinity transport system (HATS). Due to the strong correlation generally found between high-affinity root NO(3)(-) influx and NRT2.1 mRNA level, it has been postulated that transcriptional regulation of NRT2.1 is a key mechanism for modulation of the HATS activity. However, this hypothesis has never been demonstrated, and is challenged by studies suggesting the occurrence of posttranscriptional regulation at the NRT2.1 protein level. To unambiguously clarify the respective roles of transcriptional and posttranscriptional regulations of NRT2.1, we generated transgenic lines expressing a functional 35S::NRT2.1 transgene in an atnrt2.1 mutant background. Despite a high and constitutive NRT2.1 transcript accumulation in the roots, the HATS activity was still down-regulated in the 35S::NRT2.1 transformants in response to repressive nitrogen or dark treatments that strongly reduce NRT2.1 transcription and NO(3)(-) HATS activity in the wild type. In some treatments, this was associated with a decline of NRT2.1 protein abundance, indicating posttranscriptional regulation of NRT2.1. However, in other instances, NRT2.1 protein level remained constant. Changes in abundance of NAR2.1, a partner protein of NRT2.1, closely followed those of NRT2.1, and thus could not explain the close-to-normal regulation of the HATS in the 35S::NRT2.1 transformants. Even if in certain conditions the transcriptional regulation of NRT2.1 contributes to a limited extent to the control of the HATS, we conclude from this study that posttranscriptional regulation of NRT2.1 and/or NAR2.1 plays a predominant role in the control of the NO(3)(-) HATS in Arabidopsis.


Subject(s)
Anion Transport Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nitrates/metabolism , Plant Roots/metabolism , RNA Processing, Post-Transcriptional , Anion Transport Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Genetic Complementation Test , Plants, Genetically Modified , Transgenes
16.
Dev Cell ; 18(6): 927-37, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20627075

ABSTRACT

Nitrate is both a nitrogen source for higher plants and a signal molecule regulating their development. In Arabidopsis, the NRT1.1 nitrate transporter is crucial for nitrate signaling governing root growth, and has been proposed to act as a nitrate sensor. However, the sensing mechanism is unknown. Herein we show that NRT1.1 not only transports nitrate but also facilitates uptake of the phytohormone auxin. Moreover, nitrate inhibits NRT1.1-dependent auxin uptake, suggesting that transduction of nitrate signal by NRT1.1 is associated with a modification of auxin transport. Among other effects, auxin stimulates lateral root development. Mutation of NRT1.1 enhances both auxin accumulation in lateral roots and growth of these roots at low, but not high, nitrate concentration. Thus, we propose that NRT1.1 represses lateral root growth at low nitrate availability by promoting basipetal auxin transport out of these roots. This defines a mechanism connecting nutrient and hormone signaling during organ development.


Subject(s)
Arabidopsis/metabolism , Food , Indoleacetic Acids/metabolism , Nitrates/metabolism , Periplasmic Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Arabidopsis/growth & development , Biological Transport, Active/physiology , Cells, Cultured , Chemoreceptor Cells/metabolism , Female , Gene Expression Regulation, Plant/physiology , Mutation/genetics , Oocytes , Periplasmic Binding Proteins/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Signal Transduction/physiology , Tumor Suppressor Proteins/genetics , Xenopus
17.
New Phytol ; 185(3): 817-28, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20015066

ABSTRACT

Adaptation of Medicago truncatula to local nitrogen (N) limitation was investigated to provide new insights into local and systemic N signaling. The split-root technique allowed a characterization of the local and systemic responses of NO(3)(-) or N(2)-fed plants to localized N limitation. (15)N and (13)C labeling were used to monitor plant nutrition. Plants expressing pMtENOD11-GUS and the sunn-2 hypernodulating mutant were used to unravel mechanisms involved in these responses. Unlike NO(3)(-)-fed plants, N(2)-fixing plants lacked the ability to compensate rapidly for a localized N limitation by up-regulating the N(2)-fixation activity of roots supplied elsewhere with N. However they displayed a long-term response via a growth stimulation of pre-existing nodules, and the generation of new nodules, likely through a decreased abortion rate of early nodulation events. Both these responses involve systemic signaling. The latter response is abolished in the sunn mutant, but the mutation does not prevent the first response. Local but also systemic regulatory mechanisms related to plant N status regulate de novo nodule development in Mt, and SUNN is required for this systemic regulation. By contrast, the stimulation of nodule growth triggered by systemic N signaling does not involve SUNN, indicating SUNN-independent signaling.


Subject(s)
Adaptation, Physiological/drug effects , Medicago truncatula/drug effects , Medicago truncatula/growth & development , Nitrogen/pharmacology , Root Nodules, Plant/drug effects , Root Nodules, Plant/growth & development , Biomass , Carbon/metabolism , Mutation/genetics , Nitrates/pharmacology , Nitrogen/deficiency , Nitrogen/metabolism , Nitrogen Fixation/drug effects , Plant Root Nodulation/drug effects , Time Factors
18.
Plant Cell ; 20(9): 2514-28, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18780802

ABSTRACT

Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.


Subject(s)
Anion Transport Proteins/physiology , Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Mutation , Nitrates/metabolism , Amino Acid Sequence , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Chromatography, High Pressure Liquid , Cloning, Molecular , In Situ Hybridization , Ion Transport , Molecular Sequence Data , Nitrate Transporters , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Sequence Homology, Amino Acid
19.
Plant Physiol ; 146(4): 2036-53, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18305209

ABSTRACT

Root ion transport systems are regulated by light and/or sugars, but the signaling mechanisms are unknown. We showed previously that induction of the NRT2.1 NO(3)(-) transporter gene by sugars was dependent on carbon metabolism downstream hexokinase (HXK) in glycolysis. To gain further insights on this signaling pathway and to explore more systematically the mechanisms coordinating root nutrient uptake with photosynthesis, we studied the regulation of 19 light-/sugar-induced ion transporter genes. A combination of sugar, sugar analogs, light, and CO(2) treatments provided evidence that these genes are not regulated by a common mechanism and unraveled at least four different signaling pathways involved: regulation by light per se, by HXK-dependent sugar sensing, and by sugar sensing upstream or downstream HXK, respectively. More specific investigation of sugar-sensing downstream HXK, using NRT2.1 and NRT1.1 NO(3)(-) transporter genes as models, highlighted a correlation between expression of these genes and the concentration of glucose-6-P in the roots. Furthermore, the phosphogluconate dehydrogenase inhibitor 6-aminonicotinamide almost completely prevented induction of NRT2.1 and NRT1.1 by sucrose, indicating that glucose-6-P metabolization within the oxidative pentose phosphate pathway is required for generating the sugar signal. Out of the 19 genes investigated, most of those belonging to the NO(3)(-), NH(4)(+), and SO(4)(2-) transporter families were regulated like NRT2.1 and NRT1.1. These data suggest that a yet-unidentified oxidative pentose phosphate pathway-dependent sugar-sensing pathway governs the regulation of root nitrogen and sulfur acquisition by the carbon status of the plant to coordinate the availability of these three elements for amino acid synthesis.


Subject(s)
Carbohydrate Metabolism , Carrier Proteins/metabolism , Pentose Phosphate Pathway , Photosynthesis , Plant Roots/metabolism , Base Sequence , Carrier Proteins/genetics , DNA Primers , Genes, Plant , Ion Transport , Light , Oxidation-Reduction , Phosphorylation , Polymerase Chain Reaction
20.
Plant Physiol ; 146(4): 2020-35, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18287487

ABSTRACT

Legumes can acquire nitrogen (N) from NO(3)(-), NH(4)(+), and N(2) (through symbiosis with Rhizobium bacteria); however, the mechanisms by which uptake and assimilation of these N forms are coordinately regulated to match the N demand of the plant are currently unknown. Here, we find by use of the split-root approach in Medicago truncatula plants that NO(3)(-) uptake, NH(4)(+) uptake, and N(2) fixation are under general control by systemic signaling of plant N status. Indeed, irrespective of the nature of the N source, N acquisition by one side of the root system is repressed by high N supply to the other side. Transcriptome analysis facilitated the identification of over 3,000 genes that were regulated by systemic signaling of the plant N status. However, detailed scrutiny of the data revealed that the observation of differential gene expression was highly dependent on the N source. Localized N starvation results, in the unstarved roots of the same plant, in a strong compensatory up-regulation of NO(3)(-) uptake but not of either NH(4)(+) uptake or N(2) fixation. This indicates that the three N acquisition pathways do not always respond similarly to a change in plant N status. When taken together, these data indicate that although systemic signals of N status control root N acquisition, the regulatory gene networks targeted by these signals, as well as the functional response of the N acquisition systems, are predominantly determined by the nature of the N source.


Subject(s)
Medicago/metabolism , Nitrogen/metabolism , RNA, Messenger/genetics , Signal Transduction , Genome, Plant , Medicago/genetics , Plant Roots/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...