Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Colloid Interface Sci ; 392: 288-296, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23137909

ABSTRACT

Liquid crystalline nanostructured particles, such as cubosomes and hexosomes, are most often colloidally stabilised using the tri-block co-polymer Pluronic® F127. Although the effect of F127 on the internal particle nanostructure has been well studied, the associative aspects of F127 with cubosomes and hexosomes are poorly understood. In this study the quantitative association of F127 with phytantriol-based cubosomes and hexosomes was investigated. The amount of free F127 in the dispersions was determined using pressure ultra-filtration. The percentage of F127 associated with the particles plateaued with increasing F127 concentration above the critical aggregation concentration. Hence the free concentration of F127 in the dispersion medium was proposed as a key factor governing association below the CMC, and partitioning of F127 between micelles and particles occurred above the CMC. The association of F127 with the particles was irreversible on dilution. The F127 associated with both the external and internal surfaces of the phytantriol cubosomes. The effects of lipid and F127 concentration, lipid type, dilution of the dispersions and internal nanostructure were also elucidated. A greater amount of F127 was associated with cubosomes comprised of glyceryl monooleate (GMO) than those prepared using phytantriol. Hexosomes prepared using a mixture of phytantriol and vitamin E acetate (vitEA) had a greater amount of F127 associated with them than phytantriol cubosomes. Hexosomes prepared using selachyl alcohol had less F127 associated with them than phytantriol:vitEA-based hexosomes and GMO-based cubosomes. This indicated that both the lipid from which the particles are composed and the particle internal nanostructure have an influence on the association of F127 with lyotropic liquid crystalline nanostructured particles.


Subject(s)
Liquid Crystals/chemistry , Nanostructures/chemistry , Poloxamer/chemistry , Particle Size
2.
Langmuir ; 26(11): 9000-10, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20364857

ABSTRACT

Polar lipids often exhibit equilibrium liquid crystalline structures in excess water, such as the bicontinuous cubic phases (Q(II)) at low temperatures and inverse hexagonal phase (H(II)) at higher temperatures. In this study, the equilibrium and nonequilibrium phase behavior of glyceryl monooleate (GMO) and phytantriol (PHYT) systems in excess water were investigated using both continuous heating and cooling cycles, and rapid temperature changes. Evolution of the phase structure was followed using small-angle X-ray scattering (SAXS). During cooling, not only was supercooling of the liquid crystalline systems by up to 25 degrees C observed, but evidence for nonequilibrium phase structures (not present on heating; such as the gyroid cubic phase only present at low water content in equilibrium) was also apparent. The nonequilibrium phases were surprisingly stable, with return to equilibrium structure for dispersed submicrometer sized particle systems taking more than 13 h in some cases. Inhibition of phase nucleation was the key to greater supercooling effects observed for the dispersed particles compared to the bulk systems. These findings highlight the need for continued study into the nonequilibrium phase structures for these types of systems, as this may influence performance in applications such as drug delivery.


Subject(s)
Cold Temperature , Scattering, Radiation , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...