Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Chemistry ; 30(19): e202304181, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38285807

ABSTRACT

Abundantly available biomass-based platform chemicals, including 5-hydroxymethylfurfural (HMF), are essential stepping stones in steering the chemical industry away from fossil fuels. The efficient catalytic oxidation of HMF to its diacid derivative, 2,5-furandicarboxylic acid (FDCA), is a promising research area with potential applications in the polymer industry. Currently, the most encouraging approaches are based on solid-state catalysts and are often conducted in basic aqueous media, conditions where HMF oxidation competes with its decomposition. Efficient molecular catalysts are practically unknown for this reaction. In this study, we report on the synthesis and electrocatalysis of surface-bound molecular ruthenium complexes for the transformation of HMF to FDCA under acidic conditions. Catalyst immobilisation on mesoporous indium tin oxide electrodes is achieved through the incorporation of phosphonic acid anchoring groups. Screening experiments with HMF and further reaction intermediates revealed the catalytic route and bottlenecks in the catalytic synthesis of FDCA. Utilising these immobilised electrocatalysts, FDCA yields of up to 85 % and faradaic efficiencies of 91 % were achieved, without any indication of substrate decomposition. Surface analysis by X-ray photoelectron spectroscopy (XPS) post-electrocatalysis unveiled the desorption of the catalyst from the electrode surface as a limiting factor in terms of catalytic performance.

2.
J Am Chem Soc ; 146(1): 430-436, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134360

ABSTRACT

Macrocyclic host molecules bound to electrode surfaces enable the complexation of catalytically active guests for molecular heterogeneous catalysis. We present a surface-anchored host-guest complex with the ability to electrochemically oxidize ammonia in both organic and aqueous solutions. With an adamantyl motif as the binding group on the backbone of the molecular catalyst [Ru(bpy-NMe2)(tpada)(Cl)](PF6) (1) (where bpy-NMe2 is 4,4'-bis(dimethylamino)-2,2'-bipyridyl and tpada is 4'-(adamantan-1-yl)-2,2':6',2″-terpyridine), high binding constants with ß-cyclodextrin were observed in solution (in DMSO-d6:D2O (7:3), K11 = 492 ± 21 M-1). The strong binding affinities were also transferred to a mesoporous ITO (mITO) surface functionalized with a phosphonated derivative of ß-cyclodextrin. The newly designed catalyst (1) was compared to the previously reported naphthyl-substituted catalyst [Ru(bpy-NMe2)(tpnp)(Cl)](PF6) (2) (where tpnp is 4'-(naphthalene-2-yl)-2,2':6',2″-terpyridine) for its stability during catalysis. Despite the insulating nature of the adamantyl substituent serving as the binding group, the stronger binding of this unit to the host-functionalized electrode and the resulting shorter distance between the catalytic active center and the surface led to better performance and higher stability. Both guests are able to oxidize ammonia in both organic and aqueous solutions, and the host-anchored electrode can be refunctionalized multiple times (>3) following the loss of the catalytic activity, without a reduction in performance. Guest 1 exhibits significantly higher stability in comparison to guest 2 toward basic conditions, which often constitutes a challenge for anchored molecular systems. Ammonia oxidation in water led to the selective formation of NO3- with Faradaic efficiencies of up to 100%.

3.
Nanoscale ; 15(48): 19757-19766, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38050427

ABSTRACT

Sb2Se3, consisting of one-dimensional (Sb4Se6)n nanoribbons has drawn attention as an intriguing light absorber from the photovoltaics (PVs) research community. However, further research is required on the performance-limiting factors in Sb2Se3 PVs. In this study, we investigated the charge carrier behavior in Sb2Se3 PVs by impedance spectroscopy (IS) under light illumination. (Sb4Se6)n nanoribbons with two different orientations were used to investigate the effect of crystal orientation on the device performance. Regardless of the (Sb4Se6)n orientation, negative capacitance was observed at forward bias, representing a recombination pathway at the TiO2/Sb2Se3 interface. A comparison of the recombination resistances and lifetimes of two different Sb2Se3 PVs showed that a better interface could be formed by placing the (Sb4Se6)n ribbons parallel to the TiO2 layer. Based on these observations, an ideal structure of the Sb2Se3/TiO2 interface is proposed, which will enhance the performance of Sb2Se3 PVs toward its theoretical limit.

4.
J Mater Chem A Mater ; 11(15): 8277-8284, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37066134

ABSTRACT

Antimony selenide (Sb2Se3) is an auspicious material for solar energy conversion that has seen rapid improvement over the past ten years, but the photovoltage deficit remains a challenge. Here, simple and low-temperature treatments of the p-n heterojunction interface of Sb2Se3/TiO2-based photocathodes for photoelectrochemical water splitting were explored to address this challenge. The FTO/Ti/Au/Sb2Se3 (substrate configuration) stack was treated with (NH4)2S as an etching solution, followed by CuCl2 treatment prior to deposition of the TiO2 by atomic layer deposition. The different treatments show different mechanisms of action compared to similar reported treatments of the back Au/Sb2Se3 interface in superstrate configuration solar cells. These treatments collectively increased the onset potential from 0.14 V to 0.28 V vs. reversible hydrogen electrode (RHE) and the photocurrent from 13 mA cm-2 to 18 mA cm-2 at 0 V vs. RHE as compared to the untreated Sb2Se3 films. From SEM and XPS studies, it is clear that the etching treatment induces a morphological change and removes the surface Sb2O3 layer, which eliminates the Fermi-level pinning that the oxide layer generates. CuCl2 further enhances the performance due to the passivation of the surface defects, as supported by density functional theory molecular dynamics (DFT-MD) calculations, improving charge separation at the interface. The simple and low-cost semiconductor synthesis method combined with these facile, low-temperature treatments further increases the practical potential of Sb2Se3 for large-scale water splitting.

5.
Chem Mater ; 35(6): 2371-2380, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008405

ABSTRACT

Cu2S is a promising solar energy conversion material due to its suitable optical properties, high elemental earth abundance, and nontoxicity. In addition to the challenge of multiple stable secondary phases, the short minority carrier diffusion length poses an obstacle to its practical application. This work addresses the issue by synthesizing nanostructured Cu2S thin films, which enables increased charge carrier collection. A simple solution-processing method involving the preparation of CuCl and CuCl2 molecular inks in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing was used to obtain phase-pure nanostructured (nanoplate and nanoparticle) Cu2S thin films. The photocathode based on the nanoplate Cu2S (FTO/Au/Cu2S/CdS/TiO2/RuO x ) reveals enhanced charge carrier collection and improved photoelectrochemical water-splitting performance compared to the photocathode based on the non-nanostructured Cu2S thin film reported previously. A photocurrent density of 3.0 mA cm-2 at -0.2 versus a reversible hydrogen electrode (V RHE) with only 100 nm thickness of a nanoplate Cu2S layer and an onset potential of 0.43 V RHE were obtained. This work provides a simple, cost-effective, and high-throughput method to prepare phase-pure nanostructured Cu2S thin films for scalable solar hydrogen production.

6.
Energy Environ Sci ; 15(5): 2002-2010, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35706422

ABSTRACT

Ammonia solution etching was carried out on thermally-oxidised cuprous oxide (TO-Cu2O) in photocathode devices for water splitting. The etched devices showed increased photoelectrochemical (PEC) performance compared to the unetched ones as well as improved reproducibility. -8.6 mA cm-2 and -7 mA cm-2 photocurrent density were achieved at 0 V and 0.5 V versus the reversible hydrogen electrode (VRHE), respectively, in the champion sample with an onset potential of 0.92 VRHE and a fill factor of 44%. An applied bias photon-to-current efficiency of 3.6% at 0.56 VRHE was obtained, which represents a new record for Cu2O-based photocathode systems. Capacitance-based profiling studies showed a strong pinning effect from interfacial traps in the as-grown device, and these traps were removed by ammonia solution etching. Moreover, the etching procedure gave rise to a diverse morphology of Cu2O crystals based on the different crystallographic orientations. The distribution of crystallographic orientations and the relationship between the crystal orientation and the morphology after etching were examined by electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The high-index crystal group showed a statistically higher PEC performance than the low-index group. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) revealed metallic copper at the Cu2O/Ga2O3 interface, which we attribute as the dominant trap that limits the PEC performance. It is concluded that the metallic copper originates from the reduction of the CuO impurity layer on the as-grown Cu2O sample during the ALD process, while the reduction from Cu2O to Cu is not favourable.

7.
Chem Commun (Camb) ; 57(79): 10230-10233, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34528032

ABSTRACT

We report a regenerable and redox-inactive ZnOxHy layer that was in situ deposited onto metal oxides MOz (M = Co, Fe, and Ni) in alkaline media containing [Zn(OH)4]2- species during water oxidation. An interface dipole was developed at the MOz/Zn interface, resulting in a decrease of the OER overpotential. Exemplified by the CoOz/ZnOxHy bilayer structure, it presented a 155 mV lower overpotential to deliver 10 mA cm-2 and long-term stability relative to the unmodified CoOz film.

8.
ChemSusChem ; 14(18): 3967-3974, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34324265

ABSTRACT

Cu2 S is a promising solar energy conversion material owing to its good optical properties, elemental earth abundance, and low cost. However, simple and cheap methods to prepare phase-pure and photo-active Cu2 S thin films are lacking. This study concerns the development of a cost-effective and high-throughput method that consists of dissolving high-purity commercial Cu2 S powder in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing to obtain phase-pure crystalline low chalcocite Cu2 S thin films. After coupling with a CdS buffer layer, a TiO2 protective layer and a RuOx hydrogen evolution catalyst, the champion Cu2 S photocathode gives a photocurrent density of 2.5 mA cm-2 at -0.3 V vs. reversible hydrogen electrode (VRHE ), an onset potential of 0.42 VRHE , and high stability over 12 h in pH 7 buffer solution under AM1.5 G simulated sunlight illumination (100 mW cm-2 ). This is the first thiol-amine-based ink deposition strategy to prepare phase-pure Cu2 S thin films achieving decent photoelectrochemical performance, which will facilitate its future scalable application for solar-driven hydrogen fuel production.

9.
Nat Chem ; 13(6): 523-529, 2021 06.
Article in English | MEDLINE | ID: mdl-33767362

ABSTRACT

Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent 'click' chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.

10.
Phys Chem Chem Phys ; 23(7): 4311-4316, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33587068

ABSTRACT

This work explores the solid-liquid interface of a rhenium-tricarbonyl complex embedded in a layer of zirconium oxide deposited by atomic layer deposition (ALD). Time-resolved and steady state infrared spectroscopy were applied to reveal the correlations between the thickness of the ALD layer and the spectroscopic response of the system. We observed a transition of the molecular environment from flexible to rigid, as well as limitations to ligand exchange and excited state quenching on the embedded complexes, when the ALD layer is roughly of the same height as the molecules.

11.
Chem Soc Rev ; 48(19): 4979-5015, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31483417

ABSTRACT

To accelerate the deployment of hydrogen produced by renewable solar energy, several technologies have been competitively developed, including photoelectrochemical (PEC), photocatalytic, and photovoltaic-electrolysis routes. In this review, we place PEC in context with these competing technologies and highlight key advantages of PEC systems. After defining the unique performance metrics of the PEC water splitting system, recently developed strategies for enhancing each performance metric, such as the photocurrent density, photovoltage, fill factor, and stability are surveyed in conjunction with the relevant theoretical aspects. In addition, various advanced characterization methods are discussed, including recently developed in situ techniques, allowing us to understand not only the basic properties of materials but also diverse photophysical phenomena underlying the PEC system. Based on the insights gained from these advanced characterization techniques, we not only provide a resource for researchers in the field as well as those who want to join the field, but also offer an outlook of how thin film-based PEC studies could lead to commercially viable water splitting systems.

12.
Article in English | MEDLINE | ID: mdl-31359904

ABSTRACT

Dual energy computed tomography (DE CT) is a promising technology for the assessment of bone compositions. One of potential applications involves evaluations of fracture healing using longitudinal measurements of callus mineralization. However, imaging of fractures is often challenged by the presence of metal fixation hardware. In this work, we report on a new simultaneous DE reconstruction-decomposition algorithm that integrates the previously introduced Model-Based Material Decomposition (MBMD) with a Known-Component (KC) framework to mitigate metal artifacts. The algorithm was applied to the DE data obtained on a dedicated extremity cone-beam CT (CBCT) with capability for weight-bearing imaging. To acquire DE projections in a single gantry rotation, we exploited a unique multisource design of the system, where three X-ray sources were mounted parallel to the axis of rotation. The central source provided high energy (HE) data at 120 kVp, while the two remaining sources were operated at a low energy (LE) of 60 kVp. This novel acquisition trajectory further motivates the use of MBMD to accommodate this complex DE sampling pattern. The algorithm was validated in a simulation study using a digital extremity phantom. The phantom consisted of a water background with an insert containing varying concentrations of calcium (50 - 175 mg/mL). Two configurations of titanium implants were considered: a fixation plate and an intramedullary nail. The accuracy of calcium-water decompositions obtained with the proposed KC-MBMD algorithm was compared to MBMD without metal component model. Metal artifacts were almost completely removed by KC-MBMD. Relative absolute errors of calcium concentration in the vicinity of metal were 6% - 31% for KC-MBMD (depending on the calcium insert and implant configuration), compared favorably to 48% - 273% for MBMD. Moreover, accuracy of concentration estimates for KC-MBMD in the presence of metal implant approached that of MBMD in a configuration without implant (6%-23%). The proposed algorithm achieved accurate DE material decomposition in the presence of metal implants using a non-conventional, axial multisource DE acquisition pattern.

13.
ChemSusChem ; 12(9): 1771-1774, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30998294

ABSTRACT

In this Editorial, Guest Editors David Tilley, Annabella Selloni, and Takashi Hisatomi introduce the Special Issue of ChemSusChem on Water Splitting: From Theory to Practice. The significance and enormous challenges of sunlight-driven water splitting are reviewed and the contents of the contributions to the Special Issue are outlined.

14.
ACS Appl Mater Interfaces ; 11(9): 9510-9518, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30734550

ABSTRACT

TiO2 and WO3 are two of the most important, industrially relevant earth-abundant oxides. Although both materials show complementary functionality and are promising candidates for similar types of applications such as catalysis, sensor technology, and energy conversion, their chemical stability in reactive environments differs remarkably. In this study, anodic barrier oxides are grown on solid-solution W xTi1- x alloy precursors covering a wide compositional range (0 ≤ x ≤ 1) with the goal of creating functional oxides with tailored stability. A strong Ti-cation enrichment in the surface region of the grown W xTi1- xO n layer is observed, which can be controlled by both the anodizing conditions and precursor composition. For Ti concentrations above 50 at. %, a continuous nanometer-thick TiO2 protective coating is achieved on top of a homogeneous W xTi1- xO n film as evidenced by X-ray photoelectron spectroscopy and transmission electron microscopy analyses. A comprehensive electrochemical assessment demonstrates a very stable passivation of the surface in both acidic and alkaline environments. This increase in chemical stability correlates directly with the presence of this protective TiO2 film. The results of this work provide insights into the oxidation behavior of W1- xTi x alloys, but more importantly demonstrate how controlled oxidation of self-passivating alloys can lead to oxide alloys with thin, protective surface layers that otherwise would require more sophisticated deposition methods.

15.
Chem Sci ; 9(28): 6062-6067, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-30079219

ABSTRACT

In this work, we demonstrate that buried junction photocathodes featuring an ALD TiO2 protective overlayer can be readily characterized using a variation of the dual working electrode (DWE) technique, where the second working electrode (WE2) is spatially isolated from the hydrogen-evolving active area. The measurement of the surface potential during operation enables the operando deconvolution of the photovoltaic and electrocatalytic performance of these photocathodes, by reconstructing J-ΔV curves (reminiscent of photovoltaic J-V curves) from the 3-electrode water splitting data. Our method provides a clearer understanding of the photocathode degradation mechanism during stability tests, including loss of the catalyst from the surface, which is only possible in our isolated WE2 configuration. A pn+Si/TiO2 photocathode was first investigated as a well behaved model system, and then the technique was applied to an emerging material system based on Cu2O/Ga2O3, where we uncovered an intrinsic instability of the Cu2O/Ga2O3 junction (loss of photovoltage) during long term stability measurements.

16.
Chimia (Aarau) ; 72(5): 333-337, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29789072

ABSTRACT

The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.

17.
Article in English | MEDLINE | ID: mdl-31346302

ABSTRACT

PURPOSE: A prototype high-resolution extremity cone-beam CT (CBCT) system based on a CMOS detector was developed to support quantitative in vivo assessment of bone microarchitecture. We compare the performance of CMOS CBCT to an amorphous silicon (a-Si:H) FPD extremity CBCT in imaging of trabecular bone. METHODS: The prototype CMOS-based CBCT involves a DALSA Xineos3030 detector (99 µm pixels) with 400 µm-thick CsI scintillator and a compact 0.3 FS rotating anode x-ray source. We compare the performance of CMOS CBCT to an a-Si:H FPD scanner built on a similar gantry, but using a Varian PaxScan2530 detector with 0.137 mm pixels and a 0.5 FS stationary anode x-ray source. Experimental studies include measurements of Modulation Transfer Function (MTF) for the detectors and in 3D image reconstructions. Image quality in clinical scenarios is evaluated in scans of a cadaver ankle. Metrics of trabecular microarchitecture (BV/TV, Bone Volume/Total Volume, TbSp, Trabecular Spacing, and TbTh, trabecular thickness) are obtained in a human ulna using CMOS CBCT and a-Si:H FPD CBCT and compared to gold standard µCT. RESULTS: The CMOS detector achieves ~40% increase in the f20 value (frequency at which MTF reduces to 0.20) compared to the a-Si:H FPD. In the reconstruction domain, the FWHM of a 127 µm tungsten wire is also improved by ~40%. Reconstructions of a cadaveric ankle reveal enhanced modulation of trabecular structures with the CMOS detector and soft-tissue visibility that is similar to that of the a-Si:H FPD system. Correlations of the metrics of bone microarchitecture with gold-standard µCT are improved with CMOS CBCT: from 0.93 to 0.98 for BV/TV, from 0.49 to 0.74 for TbTh, and from 0.9 to 0.96 for TbSp. CONCLUSION: Adoption of a CMOS detector in extremity CBCT improved spatial resolution and enhanced performance in metrics of bone microarchitecture compared to a conventional a-Si:H FPD. The results support development of clinical applications of CMOS CBCT in quantitative imaging of bone health.

18.
J Phys Chem Lett ; 9(1): 49-56, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29235870

ABSTRACT

Intermolecular vibrational energy transfer in monolayers of isotopically mixed rhenium carbonyl complexes at solid-liquid interfaces is investigated with the help of ultrafast 2D Attenuated Total Reflectance Infrared (2D ATR IR) spectroscopy in dependence of plasmonic surface enhancement effects. Dielectric and plasmonic materials are used to demonstrate that plasmonic effects have no impact on the vibrational energy transfer rate in a regime of moderate IR surface enhancement (enhancement factors up to ca. 30). This result can be explained with the common image-dipole picture. The vibrational energy transfer rate thus can be used as a direct observable to determine intermolecular distances on surfaces, regardless of their plasmonic properties.

19.
ACS Appl Mater Interfaces ; 9(50): 43614-43622, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29190064

ABSTRACT

Protective overlayers for light absorbers in photoelectrochemical water-splitting devices have gained considerable attention in recent years. They stabilize light absorbers which would normally be prone to chemical side reactions leading to degradation of the absorber. Atomic layer deposition (ALD) enables conformal and reproducible ultrathin protective layer growth even on highly structured substrates. One of the most widely investigated protective layers is amorphous TiO2, deposited by ALD at a relatively low temperature (120-150 °C). We have deposited protective layers from tetrakis(dimethylamido)titanium(IV) at two different temperatures and investigated their chemical composition as well as optical and electrochemical properties. Our main findings reveal a change in the flat band potential with thickness, reaching a stable value of about -50 to -100 mV versus reversible hydrogen electrode for films >30 nm, with doping densities of ∼1020 cm3. Practical thicknesses to achieve pinhole-free films are evaluated and discussed.

20.
J Am Chem Soc ; 139(42): 15094-15103, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28968492

ABSTRACT

A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi2O4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi2O4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi2O4, which can facilitate charge separation. Compared to homogeneous CuBi2O4 photocathodes, CuBi2O4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi2O4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi2O4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi2O4 up to -2.5 mA/cm2 at 0.6 V vs RHE with H2O2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi2O4 are maintained. Lastly, forward gradient self-doped CuBi2O4 photocathodes are protected with a CdS/TiO2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

SELECTION OF CITATIONS
SEARCH DETAIL
...