Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(3): e033109, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38258662

ABSTRACT

BACKGROUND: Intraplaque angiogenesis occurs in response to atherosclerotic plaque hypoxia, which is driven mainly by highly metabolically active macrophages. Improving plaque oxygenation by increasing macrophage hypoxic signaling, thus stimulating intraplaque angiogenesis, could restore cellular function and neovessel maturation, and decrease plaque formation. Prolyl hydroxylases (PHDs) regulate cellular responses to hypoxia. We therefore aimed to elucidate the role of myeloid PHD2, the dominant PHD isoform, on intraplaque angiogenesis in a murine model for venous bypass grafting. METHODS AND RESULTS: Myeloid PHD2 conditional knockout (PHD2cko) and PHD2 wild type mice on an Ldlr-/- background underwent vein graft surgery (n=11-15/group) by interpositioning donor caval veins into the carotid artery of genotype-matched mice. At postoperative day 28, vein grafts were harvested for morphometric and compositional analysis, and blood was collected for flow cytometry. Myeloid PHD2cko induced and improved intraplaque angiogenesis by improving neovessel maturation, which reduced intraplaque hemorrhage. Intima/media ratio was decreased in myeloid PHD2cko vein grafts. In addition, PHD2 deficiency prevented dissection of vein grafts and resulted in an increase in vessel wall collagen content. Moreover, the macrophage proinflammatory phenotype in the vein graft wall was attenuated in myeloid PHD2cko mice. In vitro cultured PHD2cko bone marrow-derived macrophages exhibited an increased proangiogenic phenotype compared with control. CONCLUSIONS: Myeloid PHD2cko reduces vein graft disease and ameliorates vein graft lesion stability by improving intraplaque angiogenesis.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Plaque, Atherosclerotic , Vascular Remodeling , Animals , Mice , Angiogenesis , Disease Models, Animal , Hypoxia , Mice, Knockout , Plaque, Atherosclerotic/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
2.
Cardiovasc Res ; 119(7): 1509-1523, 2023 07 04.
Article in English | MEDLINE | ID: mdl-36718802

ABSTRACT

AIMS: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS: Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION: We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Plaque, Atherosclerotic , Humans , Mice , Animals , Aged , Plaque, Atherosclerotic/metabolism , Hypercholesterolemia/metabolism , Transcriptome , Mice, Inbred C57BL , Atherosclerosis/metabolism , Collagen/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Aging/genetics , Fibroblasts/metabolism , Cholesterol/metabolism
3.
Front Cell Dev Biol ; 9: 695684, 2021.
Article in English | MEDLINE | ID: mdl-34458258

ABSTRACT

BACKGROUND: The protein 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a key stimulator of glycolytic flux. Systemic, partial PFKFB3 inhibition previously decreased total plaque burden and increased plaque stability. However, it is unclear which cell type conferred these positive effects. Myeloid cells play an important role in atherogenesis, and mainly rely on glycolysis for energy supply. Thus, we studied whether myeloid inhibition of PFKFB3-mediated glycolysis in Ldlr-/-LysMCre+/-Pfkfb3 fl/fl (Pfkfb3 fl/fl ) mice confers beneficial effects on plaque stability and alleviates cardiovascular disease burden compared to Ldlr-/-LysMCre+/-Pfkfb3 wt/wt control mice (Pfkfb3 wt/wt ). METHODS AND RESULTS: Analysis of atherosclerotic human and murine single-cell populations confirmed PFKFB3/Pfkfb3 expression in myeloid cells, but also in lymphocytes, endothelial cells, fibroblasts and smooth muscle cells. Pfkfb3 wt/wt and Pfkfb3 fl/fl mice were fed a 0.25% cholesterol diet for 12 weeks. Pfkfb3 fl/fl bone marrow-derived macrophages (BMDMs) showed 50% knockdown of Pfkfb3 mRNA. As expected based on partial glycolysis inhibition, extracellular acidification rate as a measure of glycolysis was partially reduced in Pfkfb3 fl/fl compared to Pfkfb3 wt/wt BMDMs. Unexpectedly, plaque and necrotic core size, as well as macrophage (MAC3), neutrophil (Ly6G) and collagen (Sirius Red) content were unchanged in advanced Pfkfb3 fl/fl lesions. Similarly, early lesion plaque and necrotic core size and total plaque burden were unaffected. CONCLUSION: Partial myeloid knockdown of PFKFB3 did not affect atherosclerosis development in advanced or early lesions. Previously reported positive effects of systemic, partial PFKFB3 inhibition on lesion stabilization, do not seem conferred by monocytes, macrophages or neutrophils. Instead, other Pfkfb3-expressing cells in atherosclerosis might be responsible, such as DCs, smooth muscle cells or fibroblasts.

4.
Cells ; 10(7)2021 07 10.
Article in English | MEDLINE | ID: mdl-34359916

ABSTRACT

Platelet-derived growth factor B (PDGF-B) is a mitogenic, migratory and survival factor. Cell-associated PDGF-B recruits stabilizing pericytes towards blood vessels through retention in extracellular matrix. We hypothesized that the genetic ablation of cell-associated PDGF-B by retention motif deletion would reduce the local availability of PDGF-B, resulting in microvascular pericyte loss, microvascular permeability and exacerbated atherosclerosis. Therefore, Ldlr-/-Pdgfbret/ret mice were fed a high cholesterol diet. Although plaque size was increased in the aortic root of Pdgfbret/ret mice, microvessel density and intraplaque hemorrhage were unexpectedly unaffected. Plaque macrophage content was reduced, which is likely attributable to increased apoptosis, as judged by increased TUNEL+ cells in Pdgfbret/ret plaques (2.1-fold) and increased Pdgfbret/ret macrophage apoptosis upon 7-ketocholesterol or oxidized LDL incubation in vitro. Moreover, Pdgfbret/ret plaque collagen content increased independent of mesenchymal cell density. The decreased macrophage matrix metalloproteinase activity could partly explain Pdgfbret/ret collagen content. In addition to the beneficial vascular effects, we observed reduced body weight gain related to smaller fat deposition in Pdgfbret/ret liver and adipose tissue. While dampening plaque inflammation, Pdgfbret/ret paradoxically induced systemic leukocytosis. The increased incorporation of 5-ethynyl-2'-deoxyuridine indicated increased extramedullary hematopoiesis and the increased proliferation of circulating leukocytes. We concluded that Pdgfbret/ret confers vascular and metabolic effects, which appeared to be protective against diet-induced cardiovascular burden. These effects were unrelated to arterial mesenchymal cell content or adventitial microvessel density and leakage. In contrast, the deletion drives splenic hematopoiesis and subsequent leukocytosis in hypercholesterolemia.


Subject(s)
Atherosclerosis/metabolism , Hematopoiesis, Extramedullary , Proto-Oncogene Proteins c-sis/metabolism , Animals , Apoptosis , Body Weight , Cell Movement , Cell Proliferation , Leukocytes/pathology , Macrophages/pathology , Male , Mice, Inbred C57BL , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Solubility
5.
Curr Opin Lipidol ; 31(5): 273-278, 2020 10.
Article in English | MEDLINE | ID: mdl-32773464

ABSTRACT

PURPOSE OF REVIEW: Fibroblasts are very heterogeneous and plastic cells in the vasculature. A growing interest in fibroblasts in healthy and atherosclerotic vasculature is observed, next to macrophages, endothelial cells, and smooth muscle cells (SMCs). In this review, we discuss fibroblast presence, heterogeneity, origin, and plasticity in health and atherosclerosis based on latest literature. RECENT FINDINGS: With help of single cell sequencing (SCS) techniques, we have gained more insight into presence and functions of fibroblasts in atherosclerosis. Next to SMCs, fibroblasts are extracellular matrix-producing cells abundant in the vasculature and involved in atherogenesis. Fibroblasts encompass a heterogeneous population and SCS data reveal several fibroblast clusters in healthy and atherosclerotic tissue with varying gene expression and function. Moreover, recent findings indicate interesting similarities between adventitial stem and/or progenitor cells and fibroblasts. Also, communication with inflammatory cells opens up a new therapeutic avenue. SUMMARY: Because of their highly plastic and heterogeneous nature, modulating fibroblast cell function and communication in the atherosclerotic vessel might be useful in battling atherosclerosis from within the plaque.


Subject(s)
Atherosclerosis/pathology , Fibroblasts/pathology , Animals , Atherosclerosis/genetics , Cell Communication , Fibroblasts/metabolism , Gene Expression Regulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...