Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 22157, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785687

ABSTRACT

The Grand Canyon region in northern Arizona is a home or sacred place of origin for many Native Americans and is visited by over 6 million tourists each year. Most communities in the area depend upon groundwater for all water uses. Some of the highest-grade uranium ore in the United States also is found in the Grand Canyon region. A withdrawal of over 4000 km2 of Federal land in the Grand Canyon region from new uranium mining activities for 20 years was instituted in 2012, owing in part to a lack of scientific data on potential effects from uranium mining on water resources in the area. The U.S. Geological Survey has collected groundwater chemistry samples since 1981 in the Grand Canyon region to better understand the current state of groundwater quality, to monitor for changes in groundwater quality that may be the result of mining activities, and to identify "hot spots" with elevated metal concentrations and investigate the causes. This manuscript presents results for the assessment of uranium in groundwater in the Grand Canyon region. Analytical results for uranium in groundwater in the Grand Canyon region were available for 573 samples collected from 180 spring sites and 26 wells from September 1, 1981 to October 7, 2020. Samples were collected from springs issuing from stratigraphic units above, within, and below the Permian strata that host uranium ore in breccia pipes in the area. Maximum uranium concentrations at groundwater sites in the region ranged from less than 1 µg/L at 23 sites (11%) to 100 µg/L or more at 4 sites (2%). Of the 206 groundwater sites sampled, 195 sites (95%) had maximum observed uranium concentrations less than the U.S. Environmental Protection Agency's Maximum Contaminant Level of 30 µg/L for drinking water and 177 sites (86%) had uranium concentrations less than the 15 µg/L Canadian benchmark for protection of aquatic life in freshwater. The establishment of baseline groundwater quality is an important first step in monitoring for change in water chemistry throughout mining lifecycles and beyond to ensure the health of these critical groundwater resources.

2.
Sci Rep ; 10(1): 19740, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184415

ABSTRACT

Groundwater is a critical resource in the Grand Canyon region, supplying nearly all water needs for residents and millions of visitors. Additionally, groundwater discharging at hundreds of spring locations in and near Grand Canyon supports important ecosystems in this mostly arid environment. The security of groundwater supplies is of critical importance for both people and ecosystems in the region and the potential for changes to groundwater systems from projected climate change is a cause for concern. In this study, we analyze recent historical and projected precipitation and temperature data for the Grand Canyon region. Projected climate scenarios are then used in Soil Water Balance groundwater infiltration simulations to understand the state-of-the-science on projected changes to groundwater resources in the area. Historical climate data from 1896 through 2019 indicate multi-decadal cyclical patterns in both precipitation and temperature for most of the time period. Since the 1970s, however, a significant rising trend in temperature is observed in the area. All 10-year periods since 1993 are characterized by both below average precipitation and above average temperature. Downscaled and bias-corrected precipitation and temperature output from 97 CMIP5 global climate models for the water-year 2020-2099 time period indicate projected precipitation patterns similar to recent historical (water-year 1951-2015) data. Projected temperature for the Grand Canyon area, however, is expected to rise by as much as 3.4 °C by the end of the century, relative to the recent historical average. Integrating the effects of projected precipitation and temperature changes on groundwater infiltration, simulation results indicate that > 76% of future decades will experience average potential groundwater infiltration less than that of the recent historical period.

3.
PLoS One ; 15(11): e0241502, 2020.
Article in English | MEDLINE | ID: mdl-33147289

ABSTRACT

Assessing chemical loading from streams in remote, difficult-to-access watersheds is challenging. The Grand Canyon area in northern Arizona, an international tourist destination and sacred place for many Native Americans, is characterized by broad plateaus divided by canyons as much as two-thousand meters deep and hosts some of the highest-grade uranium deposits in the U.S. From 2015-2018 major surface waters in Grand Canyon were monitored for select elements associated with breccia-pipe uranium deposits in the area, including uranium, arsenic, cadmium, and lead. Dissolved constituents in the Colorado River were monitored upstream (Lees Ferry), in the middle (Phantom Ranch), and downstream (Diamond Creek) of uranium mining areas. Concentrations of uranium, arsenic, cadmium, and lead at these main-stem sites varied little during the study period and were all well below human health and aquatic life benchmark criteria (30, 10, 5, and 15 µg/L maximum contaminant levels and 15, 150, 0.8, and 3.1 µg/L aquatic life criteria, respectively). Additionally, dissolved and sediment-bound constituents were monitored during a wide range of streamflow conditions at Little Colorado River, Kanab Creek, and Havasu Creek tributaries, whose watersheds have experienced different levels of uranium mining activities over time. Samples from the tributary sites contained ≤3.8 µg/L of dissolved cadmium and lead, and ≤17 µg/L of dissolved uranium. Dissolved arsenic also was mostly below human and aquatic life criteria at Little Colorado River and Kanab Creek; however, 63% of water samples from Havasu Creek were above the maximum contaminant level for arsenic. Arsenic in suspended sediment was greater than sediment quality guidelines in 9%, 35%, and 35% of samples from Little Colorado River, Kanab Creek, and Havasu Creek, respectively. At the concentrations observed during this study, tributaries contributed on average only about 0.12 µg/L of arsenic and 0.03 µg/L of uranium to the main-stem river. This study demonstrates how chemical loading from mined watersheds may be reliably assessed across a wide range of flow conditions in challenging locations.


Subject(s)
Rivers/chemistry , Trace Elements/analysis , Uranium/analysis , Water Pollutants, Chemical/analysis , Arizona , Drinking Water/analysis , Environmental Monitoring , Geography , Geologic Sediments/chemistry , Quality Control , Seasons , Water Quality
4.
J Environ Manage ; 235: 442-452, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30710854

ABSTRACT

Beginning in the late 1970s, 10- to 15-year cyclical oscillations in salinity were observed at lower Colorado River monitoring sites, moving upstream from the international border with Mexico, above Imperial Dam, below Hoover Dam, and at Lees Ferry. The cause of these cyclical trends in salinity was unknown. These salinity cycles complicate the U.S. Bureau of Reclamation's (Reclamation) responsibility for managing salinity in the river for delivery of water to Mexico to meet treaty obligations. This study develops a conceptual model of the salinity cycles from time-series water quality, streamflow, and precipitation data in both the lower and upper Colorado River Basins in order to provide Reclamation the ability to understand, anticipate, and manage future salinity cycles in the lower river. Compared with the Lees Ferry record, both maximum and minimum salinity levels increase downstream by about 25% at Hoover Dam, by about 49% at Imperial Dam, and by about 69% at the northern international boundary with Mexico. In the upper basin, cyclical salinity trends are evident at the outflow of three major tributaries, where salinity is also noted to be inversely related to streamflow. Time series trends in precipitation within the catchments of the three upper basin tributaries indicate cyclical periods with above normal precipitation and periods with below normal precipitation. Periods of greater than normal precipitation in the contributing areas correspond with declines in salinity at the catchment monitoring sites and periods of less than normal precipitation correspond with rising salinity at the sites. Based on the conceptual model developed in this investigation, a multiple linear regression model was developed using a stepwise variable selection procedure to simulate salinity in Lake Powell inflow. Important variables in the explanation of salinity entering Lake Powell include flow from the three upper basin tributaries, seasonality, and mean precipitation in the upper basin, among others. The root mean square error of prediction for the MLR model was 31.48 mg/L (5.7%).


Subject(s)
Environmental Monitoring , Salinity , Colorado , Mexico , Rivers
5.
Ground Water ; 55(4): 506-518, 2017 07.
Article in English | MEDLINE | ID: mdl-28208211

ABSTRACT

The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.


Subject(s)
Climate Change , Groundwater , Colorado , Mexico , Rivers , Seasons
6.
Bull Environ Contam Toxicol ; 97(4): 543-7, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27412339

ABSTRACT

Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.


Subject(s)
Airports , Chromium/analysis , Environmental Monitoring , Groundwater/chemistry , Arizona , United States , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 379(1): 1-15, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17442380

ABSTRACT

Migration of vapors from organic chemicals residing in the subsurface into overlying buildings is known as vapor intrusion. Because of the difficulty in evaluating vapor intrusion by indoor air sampling, models are often employed to determine if a potential indoor inhalation exposure pathway exists and, if such a pathway is complete, whether long-term exposure increases the occupants' risk for cancer or other toxic effects to an unacceptable level. For site-specific vapor intrusion assessments, moisture content is, at times, determined from soil cores taken in open spaces between buildings. However, there is little published information on how moisture content measured outside a building structure compares with the moisture content directly beneath the building - where the values are most critical for vapor intrusion assessments. This research begins to address these issues by investigating the movement of soil moisture next to and beneath a building at a contaminated field site and determining the effect on vapor intrusion risk assessment. A two-dimensional, variably-saturated water flow model, HYDRUS-2D, is used with 2 years of hourly, local rainfall data to simulate subsurface moisture content in the vicinity of a hypothetical 10 x 10-m building slab at a contaminated field site. These moisture content values are used in vapor intrusion risk assessment simulations using the Johnson and Ettinger model with instantaneous and averaged moisture contents. Results show that vapor intrusion risk assessments based on moisture content determined from soil cores taken external to a building structure may moderately-to-severely underestimate the vapor intrusion risk from beneath the structure. Soil under the edges of a slab may be influenced by rainfall events and may show reduced vapor intrusion risk as a consequence. Data from a building instrumented with subslab moisture probes showed results similar to the modeling, but with a smaller difference between the subslab and outside average moisture contents. These results indicate that, depending upon the point of vapor ingress into the structure and soil type, risk-based cleanup concentrations based on outside-of-slab or default moisture content values may not be predictive of exposure to organic vapors from below a building.


Subject(s)
Air Pollution, Indoor/analysis , Models, Theoretical , Soil Pollutants/chemistry , Soil/analysis , Water/analysis , Humans , Neoplasms/etiology , Risk Assessment , Volatilization
8.
J Contam Hydrol ; 75(1-2): 71-90, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15385099

ABSTRACT

To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Gases/analysis , Organic Chemicals/analysis , Soil/analysis , Air Movements , Clinical Laboratory Techniques , Diffusion , Environmental Monitoring/instrumentation , Volatilization
9.
Environ Sci Technol ; 36(14): 3157-64, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12141498

ABSTRACT

It was hypothesized that atmospheric pressure changes can induce gas flow in the unsaturated zone to such an extent that the advective flux of organic vapors in unsaturated-zone soil gas can be significant relative to the gas-phase diffusion flux of these organic vapors. To test this hypothesis, a series of field measurements and computer simulations were conducted to simulate and compare diffusion and advection fluxes at a trichloroethene-contaminated field site at Picatinny Arsenal in north-central New Jersey. Moisture content temperature, and soil-gas pressure were measured at multiple depths (including at land surface) and times for three distinct sampling events in August 1996, October 1996, and August 1998. Gas pressures in the unsaturated zone changed significantly over time and followed changes measured in the atmosphere. Gas permeability of the unsaturated zone was estimated using data from a variety of sources, including laboratory gas permeability measurements made on intact soil cores from the site, a field air pump test, and calibration of a gas-flow model to the transient, one-dimensional gas pressure data. The final gas-flow model reproduced small pressure gradients as observed in the field during the three distinct sampling events. The velocities calculated from the gas-flow model were used in transient, one-dimensional transport simulations to quantify advective and diffusive fluxes of TCE vapor from the subsurface to the atmosphere as a function of time for each sampling event. Effective diffusion coefficients used for these simulations were determined from independent laboratory measurements made on intact soil cores collected from the field site. For two of the three sampling events (August 1996 and August 1998), the TCE gas-phase diffusion flux at land surface was significantly greater than the advection flux over the entire sampling period. For the second sampling event (October 1996), the advection flux was frequently larger than the diffusion flux. When averaged over the second sampling event, the advection and diffusion fluxes were comparable in magnitude. Sensitivity analyses indicate that diffusion fluxes increase significantly with increases in air-filled porosity near land surface, whereas advection fluxes do not. For October 1996, the comparable advection and diffusion fluxes were caused by high moisture content near land surface and a subsequent reduction in the diffusion flux relative to the advection flux. These results indicate that under certain environmental conditions, the organic vapor advection flux from the unsaturated zone to the atmosphere may be equal to or greater than the diffusion flux.


Subject(s)
Models, Theoretical , Solvents/chemistry , Trichloroethylene/chemistry , Air Movements , Diffusion , Environmental Monitoring , Gases , Solvents/analysis , Trichloroethylene/analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...