Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Mitochondrion ; 74: 101817, 2024 01.
Article in English | MEDLINE | ID: mdl-37914096

ABSTRACT

The resilience of the mitochondrial genome (mtDNA) to a high mutational pressure depends, in part, on negative purifying selection in the germline. A paradigm in the field has been that such selection, at least in part, takes place in primordial germ cells (PGCs). Specifically, Floros et al. (Nature Cell Biology 20: 144-51) reported an increase in the synonymity of mtDNA mutations (a sign of purifying selection) between early-stage and late-stage PGCs. We re-analyzed Floros' et al. data and determined that their mutational dataset was significantly contaminated with single nucleotide variants (SNVs) derived from a nuclear sequence of mtDNA origin (NUMT) located on chromosome 5. Contamination was caused by co-amplification of the NUMT sequence by cross-specific PCR primers. Importantly, when we removed NUMT-derived SNVs, the evidence of purifying selection was abolished. In addition to bulk PGCs, Floros et al. reported the analysis of single-cell late-stage PGCs, which were amplified with different sets of PCR primers that cannot amplify the NUMT sequence. Accordingly, there were no NUMT-derived SNVs among single PGC mutations. Interestingly, single PGC mutations show adecreaseof synonymity with increased intracellular mutant fraction. More specifically, nonsynonymous mutations show faster intracellular genetic drift towards higher mutant fraction than synonymous ones. This pattern is incompatible with predominantly negative selection. This suggests that germline selection of mtDNA mutations is a complex phenomenon and that the part of this process that takes place in PGCs may be predominantly positive. However counterintuitive, positive germline selection of detrimental mtDNA mutations has been reported previously andpotentially may be evolutionarily advantageous.


Subject(s)
Genome, Mitochondrial , Germ Cells , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mutation
2.
Methods Mol Biol ; 2644: 65-80, 2023.
Article in English | MEDLINE | ID: mdl-37142916

ABSTRACT

Flow cytometry has been a vital tool in cell biology for decades based on its versatile ability to detect and quantifiably measure both physical and chemical attributes of individual cells within a larger population. More recently, advances in flow cytometry have enabled nanoparticle detection. This is particularly applicable to mitochondria, which, as intracellular organelles have distinct subpopulations that can be evaluated based on differences in functional, physical, and chemical attributes, in a manner analogous to cells. This includes distinctions based on size, mitochondrial membrane potential (ΔΨm), chemical properties, and protein expression on the outer mitochondrial membrane in intact, functional organelles and internally in fixed samples. This method allows for multiparametric analysis of subpopulations of mitochondria, as well as collection for downstream analysis down to the level of a single organelle. The present protocol describes a framework for analysis and sorting mitochondria by flow cytometry, termed fluorescence activated mitochondrial sorting (FAMS), based on the separation of individual mitochondria belonging to subpopulations of interest using fluorescent dyes and antibody labeling.


Subject(s)
Mitochondria , Organelles , Flow Cytometry/methods , Mitochondria/metabolism , Organelles/metabolism , Mitochondrial Membranes/metabolism , Fluorescent Dyes/chemistry
3.
Stem Cells Dev ; 32(5-6): 99-114, 2023 03.
Article in English | MEDLINE | ID: mdl-36594561

ABSTRACT

Many adult somatic stem cell lineages are comprised of subpopulations that differ in gene expression, mitotic activity, and differentiation status. In this study, we explored if cellular heterogeneity also exists within oogonial stem cells (OSCs), and how chronological aging impacts OSCs. In OSCs isolated from mouse ovaries by flow cytometry and established in culture, we identified subpopulations of OSCs that could be separated based on differential expression of stage-specific embryonic antigen 1 (SSEA1) and cluster of differentiation 61 (CD61). Levels of aldehyde dehydrogenase (ALDH) activity were inversely related to OSC differentiation, whereas commitment of OSCs to differentiation through transcriptional activation of stimulated by retinoic acid gene 8 was marked by a decline in ALDH activity and in SSEA1 expression. Analysis of OSCs freshly isolated from ovaries of mice between 3 and 20 months of age revealed that these subpopulations were present and persisted throughout adult life. However, expression of developmental pluripotency associated 3 (Dppa3), an epigenetic modifier that promotes OSC differentiation into oocytes, was lost as the mice transitioned from a time of reproductive compromise (10 months) to reproductive failure (15 months). Further analysis showed that OSCs from aged females could be established in culture, and that once established the cultured cells reactivated Dppa3 expression and the capacity for oogenesis. Analysis of single-nucleus RNA sequence data sets generated from ovaries of women in their 20s versus those in their late 40s to early 50s showed that the frequency of DPPA3-expressing cells decreased with advancing age, and this was paralleled by reduced expression of several key meiotic differentiation genes. These data support the existence of OSC subpopulations that differ in gene expression profiles and differentiation status. In addition, an age-related decrease in Dppa3/DPPA3 expression, which is conserved between mice and humans, may play a role in loss of the ability of OSCs to maintain oogenesis with age.


Subject(s)
Oogonial Stem Cells , Ovary , Humans , Adult , Female , Mice , Animals , Aged , Oogonial Stem Cells/metabolism , Oocytes/physiology , Oogenesis , Aging , Chromosomal Proteins, Non-Histone/metabolism
4.
Adv Biol (Weinh) ; 7(6): e2200246, 2023 06.
Article in English | MEDLINE | ID: mdl-36651121

ABSTRACT

In addition to critical roles in bioenergetics, mitochondria are key contributors to the regulation of many other functions in cells, ranging from steroidogenesis to apoptosis. Numerous studies further demonstrate that cell type-specific differences exist in mitochondria, with cells of a given lineage tailoring their endogenous mitochondrial population to suit specific functional needs. These findings, coupled with studies of the therapeutic potential of mitochondrial transplantation, provide a strong impetus to better understand how mitochondria can influence cell function or fate. Here an inducible mitochondrial depletion modelis used to study how cells lacking endogenous mitochondria respond, on a global protein expression level, to transplantation with lineage-mismatched (LM) mitochondria. It is shown that LM mitochondrial transplantation does not alter the proteomic profile in nonmitochondria-depleted recipient cells; however, enforced depletion of endogenous mitochondria results in dramatic changes in the proteomic landscape, which returns to the predepletion state following internalization of LM mitochondria. These data, derived from a cell system that can be rendered free of influence by endogenous mitochondria, indicate that transplantation of mitochondria-even from a source that differs significantly from the recipient cell population, effectively restores a normal proteomic landscape to cells lacking their own mitochondria.


Subject(s)
Mitochondria , Proteomics , Mitochondria/metabolism , Energy Metabolism
6.
Front Cell Dev Biol ; 10: 942652, 2022.
Article in English | MEDLINE | ID: mdl-36081905

ABSTRACT

The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the "evolution" of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.

7.
Hum Mol Genet ; 31(23): 4075-4086, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35849052

ABSTRACT

The A-to-G point mutation at position 3243 in the human mitochondrial genome (m.3243A > G) is the most common pathogenic mtDNA variant responsible for disease in humans. It is widely accepted that m.3243A > G levels decrease in blood with age, and an age correction representing ~ 2% annual decline is often applied to account for this change in mutation level. Here we report that recent data indicate that the dynamics of m.3243A > G are more complex and depend on the mutation level in blood in a bi-phasic way. Consequently, the traditional 2% correction, which is adequate 'on average', creates opposite predictive biases at high and low mutation levels. Unbiased age correction is needed to circumvent these drawbacks of the standard model. We propose to eliminate both biases by using an approach where age correction depends on mutation level in a biphasic way to account for the dynamics of m.3243A > G in blood. The utility of this approach was further tested in estimating germline selection of m.3243A > G. The biphasic approach permitted us to uncover patterns consistent with the possibility of positive selection for m.3243A > G. Germline selection of m.3243A > G shows an 'arching' profile by which selection is positive at intermediate mutant fractions and declines at high and low mutant fractions. We conclude that use of this biphasic approach will greatly improve the accuracy of modelling changes in mtDNA mutation frequencies in the germline and in somatic cells during aging.


Subject(s)
DNA, Mitochondrial , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation , Point Mutation , Germ Cells , Mitochondrial Diseases/genetics
8.
Stem Cells ; 40(5): 523-536, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35263439

ABSTRACT

In 2004, the identification of female germline or oogonial stem cells (OSCs) that can support post-natal oogenesis in ovaries of adult mice sparked a major paradigm shift in reproductive biology. Although these findings have been independently verified, and further extended to include identification of OSCs in adult ovaries of many species ranging from pigs and cows to non-human primates and humans, a recent study rooted in single-cell RNA sequence analysis (scRNA-seq) of adult human ovarian cortical tissue claimed that OSCs do not exist, and that other groups working with OSCs following isolation by magnetic-assisted or fluorescence-activated cell sorting have mistaken perivascular cells (PVCs) for germ cells. Here we report that rare germ lineage cells with a gene expression profile matched to OSCs but distinct from that of other cells, including oocytes and PVCs, can be identified in adult human ovarian cortical tissue by scRNA-seq after optimization of analytical workflow parameters. Deeper cell-by-cell expression profiling also uncovered evidence of germ cells undergoing meiosis-I in adult human ovaries. Lastly, we show that, if not properly controlled for, PVCs can be inadvertently isolated during flow cytometry protocols designed to sort OSCs because of inherently high cellular autofluorescence. However, human PVCs and human germ cells segregate into distinct clusters following scRNA-seq due to non-overlapping gene expression profiles, which would preclude the mistaken identification and use of PVCs as OSCs during functional characterization studies.


Subject(s)
Oogonial Stem Cells , Animals , Cattle , Female , Germ Cells/metabolism , Humans , Mice , Oocytes/metabolism , Oogenesis , Oogonial Stem Cells/metabolism , Ovary , Sequence Analysis, RNA , Single-Cell Analysis , Swine , Workflow
9.
BMC Bioinformatics ; 23(1): 95, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35307007

ABSTRACT

BACKGROUND: Third-generation sequencing offers some advantages over next-generation sequencing predecessors, but with the caveat of harboring a much higher error rate. Clustering-related sequences is an essential task in modern biology. To accurately cluster sequences rich in errors, error type and frequency need to be accounted for. Levenshtein distance is a well-established mathematical algorithm for measuring the edit distance between words and can specifically weight insertions, deletions and substitutions. However, there are drawbacks to using Levenshtein distance in a biological context and hence has rarely been used for this purpose. We present novel modifications to the Levenshtein distance algorithm to optimize it for clustering error-rich biological sequencing data. RESULTS: We successfully introduced a bidirectional frameshift allowance with end-user determined accommodation caps combined with weighted error discrimination. Furthermore, our modifications dramatically improved the computational speed of Levenstein distance. For simulated ONT MinION and PacBio Sequel datasets, the average clustering sensitivity for 3GOLD was 41.45% (S.D. 10.39) higher than Sequence-Levenstein distance, 52.14% (S.D. 9.43) higher than Levenshtein distance, 55.93% (S.D. 8.67) higher than Starcode, 42.68% (S.D. 8.09) higher than CD-HIT-EST and 61.49% (S.D. 7.81) higher than DNACLUST. For biological ONT MinION data, 3GOLD clustering sensitivity was 27.99% higher than Sequence-Levenstein distance, 52.76% higher than Levenshtein distance, 56.39% higher than Starcode, 48% higher than CD-HIT-EST and 70.4% higher than DNACLUST. CONCLUSION: Our modifications to Levenshtein distance have improved its speed and accuracy compared to the classic Levenshtein distance, Sequence-Levenshtein distance and other commonly used clustering approaches on simulated and biological third-generation sequenced datasets. Our clustering approach is appropriate for datasets of unknown cluster centroids, such as those generated with unique molecular identifiers as well as known centroids such as barcoded datasets. A strength of our approach is high accuracy in resolving small clusters and mitigating the number of singletons.


Subject(s)
Algorithms , High-Throughput Nucleotide Sequencing , Cluster Analysis , Sequence Analysis, DNA
11.
Stem Cells Dev ; 30(15): 749-757, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34036812

ABSTRACT

Cells within tissues are routinely subjected to physiological stress and strain, arising from direct interactions with neighboring cells as well as with extracellular matrix components. Accordingly, there is tremendous interest in deciphering how cells sense, and respond to, changes in biomechanical forces. In this study, we explored the effects of mechanostimulation on the differentiation of mouse female germline or oogonial stem cells (OSCs) as a model for adult stem cell function. We report that increasing levels, or repeated application of a subthreshold fixed level, of radial strain to OSCs in culture significantly increased rates of in vitro oocyte formation as a measure of stem cell differentiation. These responses involved changes in F-actin-mediated cytoskeletal tension as well as in activation of intracellular signaling by Rho-associated protein kinase (ROCK) and Yes-associated protein (YAP) phosphorylation. In addition, application of mechanical strain to OSCs enhanced association of YAP with muscle-specific cytidine-adenosine-thymidine (MCAT) response elements in the promoter stimulated by retinoic acid gene 8 (Stra8), the transcriptional activation of which is required for germline meiotic commitment. These data indicate that biomechanical strain directly promotes the differentiation of adult female germline stem cells through a signaling pathway involving F-actin, ROCK, YAP, and Stra8.


Subject(s)
Adult Stem Cells , Oogonial Stem Cells , Adult Stem Cells/physiology , Animals , Cell Differentiation , Germ Cells , Mice , Oocytes , Oogonial Stem Cells/metabolism
12.
Ther Adv Reprod Health ; 14: 2633494120917350, 2020.
Article in English | MEDLINE | ID: mdl-32518919

ABSTRACT

A now large body of work has solidified the central role that mitochondria play in oocyte development, fertilization, and embryogenesis. From these studies, a new technology termed autologous germline mitochondrial energy transfer was developed for improving pregnancy success rates in assisted reproduction. Unlike prior clinical studies that relied on the use of donor, or nonautologous, mitochondria for microinjection into eggs of women with a history of repeated in vitro fertilization failure to enhance pregnancy success, autologous germline mitochondrial energy transfer uses autologous mitochondria collected from oogonial stem cells of the same woman undergoing the fertility treatment. Initial trials of autologous germline mitochondrial energy transfer during - in vitro fertilization at three different sites with a total of 104 patients indicated a benefit of the procedure for improving pregnancy success rates, with the birth of children conceived through the inclusion of autologous germline mitochondrial energy transfer during in vitro fertilization. However, a fourth clinical study, consisting of 57 patients, failed to show a benefit of autologous germline mitochondrial energy transfer-in vitro fertilization versus in vitro fertilization alone for improving cumulative live birth rates. Complicating this area of work further, a recent mouse study, which claimed to test the long-term safety of autologous mitochondrial supplementation during in vitro fertilization, raised concerns over the use of the procedure for reproduction. However, autologous mitochondria were not actually used for preclinical testing in this mouse study. The unwarranted fears that this new study's erroneous conclusions could cause in women who have become pregnant through the use of autologous germline mitochondrial energy transfer during-in vitro fertilization highlight the critical need for accurate reporting of preclinical work that has immediate bearing on human clinical studies.

13.
Aging (Albany NY) ; 12(8): 7313-7333, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32302290

ABSTRACT

Progressive loss of ovarian estrogen (E2) production is a hallmark feature of, if not a driving force behind, reproductive aging and the menopause. Recent genetic studies in mice have shown that female germline or oogonial stem cells (OSCs) contribute to maintenance of adult ovarian function and fertility under physiological conditions through support of de-novo oogenesis. Here we show that mouse OSCs express E2 receptor-α (ERα). In the presence of E2, ERα interacts with the stimulated by retinoic acid gene 8 (Stra8) promoter to drive Stra8 expression followed by oogenesis. Treatment of mice with E2 in vivo increases Stra8 expression and oogenesis, and these effects are nullified by ERα (Esr1), but not ERß (Esr2), gene disruption. Although mice lacking ERα are born with a normal quota of oocytes, ERα-deficient females develop premature ovarian insufficiency in adulthood due to impaired oogenesis. Lastly, mice treated with reversible ER antagonists show a loss of Stra8 expression and oocyte numbers; however, both endpoints rebound to control levels after ceasing drug treatment. These findings establish a key physiological role for E2-ERα signaling in promoting OSC differentiation as a potential mechanism to maintain adequate numbers of ovarian follicles during reproductive life.


Subject(s)
Aging , Estrogens/genetics , Germ Cells/cytology , Oogenesis/physiology , Ovarian Follicle/metabolism , Pregnancy, Animal , Animals , Cell Differentiation , Estrogens/metabolism , Female , Germ Cells/metabolism , Mice , Models, Animal , Oogonial Stem Cells/cytology , Oogonial Stem Cells/metabolism , Ovarian Follicle/cytology , Pregnancy , Signal Transduction
14.
Aging (Albany NY) ; 12(8): 7603-7613, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32345770

ABSTRACT

Nucleic acid sequence analyses are fundamental to all aspects of biological research, spanning aging, mitochondrial DNA (mtDNA) and cancer, as well as microbial and viral evolution. Over the past several years, significant improvements in DNA sequencing, including consensus sequence analysis, have proven invaluable for high-throughput studies. However, all current DNA sequencing platforms have limited utility for studies of complex mixtures or of individual long molecules, the latter of which is crucial to understanding evolution and consequences of single nucleotide variants and their combinations. Here we report a new technology termed LUCS (Long-molecule UMI-driven Consensus Sequencing), in which reads from third-generation sequencing are aggregated by unique molecular identifiers (UMIs) specific for each individual DNA molecule. This enables in-silico reconstruction of highly accurate consensus reads of each DNA molecule independent of other molecules in the sample. Additionally, use of two UMIs enables detection of artificial recombinants (chimeras). As proof of concept, we show that application of LUCS to assessment of mitochondrial genomes in complex mixtures from single cells was associated with an error rate of 1X10-4 errors/nucleotide. Thus, LUCS represents a major step forward in DNA sequencing that offers high-throughput capacity and high-accuracy reads in studies of long DNA templates and nucleotide variants in heterogenous samples.


Subject(s)
DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Sequence Analysis, RNA/methods , DNA/analysis , Humans
15.
Commun Biol ; 2: 258, 2019.
Article in English | MEDLINE | ID: mdl-31312727

ABSTRACT

Mitochondria are well-characterized regarding their function in both energy production and regulation of cell death; however, the heterogeneity that exists within mitochondrial populations is poorly understood. Typically analyzed as pooled samples comprised of millions of individual mitochondria, there is little information regarding potentially different functionality across subpopulations of mitochondria. Herein we present a new methodology to analyze mitochondria as individual components of a complex and heterogeneous network, using a nanoscale and multi-parametric flow cytometry-based platform. We validate the platform using multiple downstream assays, including electron microscopy, ATP generation, quantitative mass-spectrometry proteomic profiling, and mtDNA analysis at the level of single organelles. These strategies allow robust analysis and isolation of mitochondrial subpopulations to more broadly elucidate the underlying complexities of mitochondria as these organelles function collectively within a cell.


Subject(s)
DNA, Mitochondrial/metabolism , Flow Cytometry/methods , Mitochondrial Dynamics , Nanotechnology/methods , Adenosine Triphosphate/chemistry , Animals , Brain/metabolism , Calibration , Cell Separation , Female , Fluorescent Dyes/chemistry , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron , Mitochondria/metabolism , Proteomics/methods
16.
Clin Med Insights Reprod Health ; 13: 1179558119848007, 2019.
Article in English | MEDLINE | ID: mdl-31191070

ABSTRACT

Historically, approaches designed to offer women diagnosed with cancer the prospects of having a genetically matched child after completion of their cytotoxic treatments focused on the existing oocyte population as the sole resource available for clinical management of infertility. In this regard, elective oocyte and embryo cryopreservation, as well as autologous ovarian cortical tissue grafting posttreatment, have gained widespread support as options for young girls and reproductive-age women who are faced with cancer to consider. In addition, the use of ovarian protective therapies, including gonadotropin-releasing hormone agonists and sphingosine-1-phosphate analogs, has been put forth as an alternative way to preserve fertility by shielding existing oocytes in the ovaries in vivo from the side-effect damage caused by radiotherapy and many chemotherapeutic regimens. This viewpoint changed with the publication of now numerous reports that adult ovaries of many mammalian species, including humans, contain a rare population of oocyte-producing germ cells-referred to as female germline or oogonial stem cells (OSCs). This new line of study has fueled research into the prospects of generating new oocytes, rather than working with existing oocytes, as a novel approach to sustain or restore fertility in female cancer survivors. Here, we overview the history of work from laboratories around the world focused on improving our understanding of the biology of OSCs and how these cells may be used to reconstitute "artificial" ovarian tissue in vitro or to regenerate damaged ovarian tissue in vivo as future fertility-preservation options.

17.
Fertil Steril ; 111(4): 794-805, 2019 04.
Article in English | MEDLINE | ID: mdl-30871765

ABSTRACT

OBJECTIVE: To test if ovarian microenvironmental cues affect oogonial stem cell (OSC) function in a species-specific manner. DESIGN: Animal and human study. SETTING: Research laboratory. PATIENT(S)/ANIMAL(S): Human ovarian cells obtained from cryopreserved ovarian cortical tissue of reproductive-age women, and ovarian cells and tissues from female C57BL/6 mice. INTERVENTION(S): Mouse ovarian tissue, mouse OSCs (mOSCs) and human OSCs (hOSCs) were analyzed for extracellular matrix (ECM) protein expression, and OSCs isolated from adult mouse and human ovaries were cultured in the absence or presence of ECM proteins without or with an integrin signaling inhibitor. MAIN OUTCOME MEASURE(S): Gene expression and in vitro derived (IVD) oocyte formation. RESULT(S): Culture of mOSCs on a collagen-based ECM significantly elevated the rate of differentiation of the cells into IVD oocytes. Mouse OSCs expressed many integrins, including Arg-Gly-Asp (RGD)-binding subunits, and ECM-mediated increases in mOSC differentiation were blocked by addition of integrin-antagonizing RGD peptides. In comparison, hOSCs expressed a different pattern of integrin subunits compared with mOSCs, and hOSCs were unresponsive to a collagen-based ECM; however, hOSCs exhibited increased differentiation into IVD oocytes when cultured on laminin. CONCLUSION(S): These data, along with in silico analysis of ECM protein profiles in human ovaries, indicate that ovarian ECM-based niche components function in a species-specific manner to control OSC differentiation.


Subject(s)
Cell Differentiation , Extracellular Matrix/physiology , Oogonial Stem Cells/physiology , Ovary/cytology , Adult , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Animals , Cells, Cultured , Female , Humans , Mice , Mice, Inbred C57BL , Primary Cell Culture , Signal Transduction/physiology , Species Specificity , Young Adult
18.
Cells ; 8(2)2019 01 28.
Article in English | MEDLINE | ID: mdl-30696098

ABSTRACT

A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.


Subject(s)
Germ Cells/cytology , Mammals/physiology , Oogenesis , Oogonial Stem Cells/cytology , Ovary/cytology , Animals , Female , Humans , Reproductive Techniques, Assisted
19.
Genes (Basel) ; 9(5)2018 May 21.
Article in English | MEDLINE | ID: mdl-29883421

ABSTRACT

Contrasting the equal contribution of nuclear genetic material from maternal and paternal sources to offspring, passage of mitochondria, and thus mitochondrial DNA (mtDNA), is uniparental through the egg. Since mitochondria in eggs are ancestral to all somatic mitochondria of the next generation and to all cells of future generations, oocytes must prepare for the high energetic demands of maturation, fertilization and embryogenesis while simultaneously ensuring that their mitochondrial genomes are inherited in an undamaged state. Although significant effort has been made to understand how the mtDNA bottleneck and purifying selection act coordinately to prevent silent and unchecked spreading of invisible mtDNA mutations through the female germ line across successive generations, it is unknown if and how somatic cells of the immediate next generation are spared from inheritance of detrimental mtDNA molecules. Here, we review unique aspects of mitochondrial activity and segregation in eggs and early embryos, and how these events play into embryonic developmental competency in the face of advancing maternal age.

20.
Stem Cells Dev ; 27(11): 723-735, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29631484

ABSTRACT

The in vivo gene networks involved in coordinating human fetal ovarian development remain obscure. In this study, quantitative mass spectrometry was conducted on ovarian tissue collected at key stages during the first two trimesters of human gestational development, confirming the expression profiling data using immunofluorescence, as well as in vitro modeling with human oogonial stem cells (OSCs) and human embryonic stem cells (ESCs). A total of 3,837 proteins were identified in samples spanning developmental days 47-137. Bioinformatics clustering and Ingenuity Pathway Analysis identified DNA mismatch repair and base excision repair as major pathways upregulated during this time. In addition, MAEL and TEX11, two key meiosis-related proteins, were identified as highly expressed during the developmental window associated with fetal oogenesis. These findings were confirmed and extended using in vitro differentiation of OSCs into in vitro derived oocytes and of ESCs into primordial germ cell-like cells and oocyte-like cells, as models. In conclusion, the global protein expression profiling data generated by this study have provided novel insights into human fetal ovarian development in vivo and will serve as a valuable new resource for future studies of the signaling pathways used to orchestrate human oogenesis and folliculogenesis.


Subject(s)
Oocytes/metabolism , Oogenesis , Ovary/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/metabolism , Humans , Kinetics , Ovary/cytology , Ovary/embryology , Proteome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...