Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
2.
Oecologia ; 204(1): 47-58, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091102

ABSTRACT

Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer, Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; -45 ± 19 g m-2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m-2 year-1 led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m-2 year-1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forb Artemisia ludoviciana by 34 ± 12 SE g m-2 (94%) and decreased the forb Solidago rigida by 32 ± 13 SE g m-2 (79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species.


Subject(s)
Deer , Ecosystem , Animals , Herbivory , Grassland , Nitrogen , Plants , Soil
3.
PNAS Nexus ; 2(10): pgad319, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881340

ABSTRACT

Highly productive agriculture is essential to feed humanity, but agricultural practices often harm human health and the environment. Using a nitrogen (N) mass-balance model to account for N inputs and losses to the environment, along with empirical based models of yield response, we estimate the potential gains to society from improvements in nitrogen management that could reduce health and environmental costs from maize grown in the US Midwest. We find that the monetized health and environmental costs to society of current maize nitrogen management practices are six times larger than the profits earned by farmers. Air emissions of ammonia from application of synthetic fertilizer and manure are the largest source of pollution costs. We show that it is possible to reduce these costs by 85% ($21.6 billion per year, 2020$) while simultaneously increasing farmer profits. These gains come from (i) managing fertilizer ammonia emissions by changing the mix of fertilizer and manure applied, (ii) improving production efficiency by reducing fertilization rates, and (iii) halting maize production on land where health and environmental costs exceed farmer profits, namely on low-productivity land and locations in which emissions are especially harmful. Reducing ammonia emissions from changing fertilizer types-in (i)-reduces health and environmental costs by 46% ($11.7 billion). Reducing fertilization rates-in (ii)-limits nitrous oxide emissions, further reducing health and environmental costs by $9.5 billion, and halting production on 16% of maize-growing land in the Midwest-in (iii)-reduces costs by an additional $0.4 billion.

4.
Ecol Lett ; 26(8): 1394-1406, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37387315

ABSTRACT

To determine which types of plant traits might better explain ecosystem functioning and plant evolutionary histories, we compiled 42 traits for each of 15 perennial species in a biodiversity experiment. We used every possible combination of three traits to cluster species. Across these 11,480 combinations, clusters generated using tissue %Ca, %N and %K best mapped onto phylogeny. Moreover, for the 15 best combinations of three traits, 82% of traits were chemical, 16% morphological and 2% metabolic. The diversity-dependence of ecosystem productivity was better explained by the %Ca, %N and %K clusters: compared to adding a new species at random, adding a species from an absent cluster/clade better-explained gains in productivity. Species number impacted productivity only when all clusters were present. Our results suggest that tissue elemental chemistry might be more phylogenetically conserved and more strongly related to ecosystem functioning than commonly measured morphological and physiological traits, a possibility that merits exploration.


Subject(s)
Biodiversity , Ecosystem , Phylogeny , Biological Evolution , Plants
6.
Ecology ; 104(2): e3883, 2023 02.
Article in English | MEDLINE | ID: mdl-36208059

ABSTRACT

Mounting evidence suggests that plant-soil feedbacks (PSF) may determine plant community structure. However, we still have a poor understanding of how predictions from short-term PSF experiments compare with outcomes of long-term field experiments involving competing plants. We conducted a reciprocal greenhouse experiment to examine how the growth of prairie grass species depended on the soil communities cultured by conspecific or heterospecific plant species in the field. The source soil came from monocultures in a long-term competition experiment (LTCE; Cedar Creek Ecosystem Science Reserve, MN, USA). Within the LTCE, six species of perennial prairie grasses were grown in monocultures or in eight pairwise competition plots for 12 years under conditions of low or high soil nitrogen availability. In six cases, one species clearly excluded the other; in two cases, the pair appeared to coexist. In year 15, we gathered soil from all 12 soil types (monocultures of six species by two nitrogen levels) and grew seedlings of all six species in each soil type for 7 weeks. Using biomass estimates from this greenhouse experiment, we predicted coexistence or competitive exclusion using pairwise PSFs, as derived by Bever and colleagues, and compared model predictions to observed outcomes within the LTCE. Pairwise PSFs among the species pairs ranged from negative, which is predicted to promote coexistence, to positive, which is predicted to promote competitive exclusion. However, these short-term PSF predictions bore no systematic resemblance to the actual outcomes of competition observed in the LTCE. Other forces may have more strongly influenced the competitive interactions or critical assumptions that underlie the PSF predictions may not have been met. Importantly, the pairwise PSF score derived by Bever et al. is only valid when the two species exhibit an internal equilibrium, corresponding to the Lotka-Volterra competition outcomes of stable coexistence and founder control. Predicting the other two scenarios, competitive exclusion by either species irrespective of initial conditions, requires measuring biomass in uncultured soil, which is methodologically challenging. Subject to several caveats that we discuss, our results call into question whether long-term competitive outcomes in the field can be predicted from the results of short-term PSF experiments.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Feedback , Plants , Nitrogen/analysis
7.
Proc Natl Acad Sci U S A ; 119(33): e2120584119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939701

ABSTRACT

Understanding and communicating the environmental impacts of food products is key to enabling transitions to environmentally sustainable food systems [El Bilali and Allahyari, Inf. Process. Agric. 5, 456-464 (2018)]. While previous analyses compared the impacts of food commodities such as fruits, wheat, and beef [Poore and Nemecek, Science 360, 987-992 (2018)], most food products contain numerous ingredients. However, because the amount of each ingredient in a product is often known only by the manufacturer, it has been difficult to assess their environmental impacts. Here, we develop an approach to overcome this limitation. It uses prior knowledge from ingredient lists to infer the composition of each ingredient, and then pairs this with environmental databases [Poore and Nemecek Science 360, 987-992 (2018); Gephart et al., Nature 597, 360-365 (2021)] to derive estimates of a food product's environmental impact across four indicators: greenhouse gas emissions, land use, water stress, and eutrophication potential. Using the approach on 57,000 products in the United Kingdom and Ireland shows food types have low (e.g., sugary beverages, fruits, breads), to intermediate (e.g., many desserts, pastries), to high environmental impacts (e.g., meat, fish, cheese). Incorporating NutriScore reveals more nutritious products are often more environmentally sustainable but there are exceptions to this trend, and foods consumers may view as substitutable can have markedly different impacts. Sensitivity analyses indicate the approach is robust to uncertainty in ingredient composition and in most cases sourcing. This approach provides a step toward enabling consumers, retailers, and policy makers to make informed decisions on the environmental impacts of food products.


Subject(s)
Environment , Food Supply , Animals , Cattle , Greenhouse Gases , Meat , United Kingdom
8.
Proc Natl Acad Sci U S A ; 119(24): e2200118119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666869

ABSTRACT

Protected areas (PAs) are a cornerstone of global conservation and central to international plans to minimize global extinctions. During the coming century, global ecosystem destruction and fragmentation associated with increased human population and economic activity could make the long-term survival of most terrestrial vertebrates even more dependent on PAs. However, the capacity of the current global PA network to sustain species for the long term is unknown. Here, we explore this question for all nonvolant terrestrial mammals for which we found sufficient data, ∼4,000 species. We first estimate the potential population size of each such mammal species in each PA and then use three different criteria to estimate if solely the current global network of PAs might be sufficient for their long-term survival. Our analyses suggest that current PAs may fail to provide robust protection for about half the species analyzed, including most species currently listed as threatened with extinction and a third of species not currently listed as threatened. Hundreds of mammal species appear to have no viable protected populations. Underprotected species were found across all body sizes, taxonomic groups, and geographic regions. Large-bodied mammals, endemic species, and those in high-biodiversity tropical regions were particularly poorly protected by existing PAs. As new international biodiversity targets are formulated, our results suggest that the global network of PAs must be greatly expanded and most importantly that PAs must be located in diverse regions that encompass species not currently protected and must be large enough to ensure that protected species can persist for the long term.


Subject(s)
Conservation of Natural Resources , Mammals , Animals , Biodiversity , Extinction, Biological , Humans
9.
Proc Natl Acad Sci U S A ; 119(26): e2110364119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733267

ABSTRACT

Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches. Here, we resolve this tension by quantifying thresholds in fire spread locally, using field data from individual fires (n = 1,131) in grassy ecosystems across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evaluating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and 2016 to 2018) using data from Kruger National Park in South Africa. An infection model captured observed patterns in individual fire spread better than competing models. The proportion of the landscape that burned was well described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across variability resulted in quasi-linear patterns. Altogether, results suggest that models aiming to capture fire responses to global change should incorporate nonlinear fire spread thresholds but that linear approximations may sufficiently capture medium-term trends under a stationary climate.


Subject(s)
Ecosystem , Poaceae , Wildfires , Climate , Climate Change , Models, Theoretical , South Africa
10.
Ecology ; 103(7): e3694, 2022 07.
Article in English | MEDLINE | ID: mdl-35353386

ABSTRACT

Metacommunity theory predicts that the composition and diversity of a site depend on its characteristics and those of its neighborhood. Dispersal between plots in a field experiment could link responses observed in a focal plot to both its treatment and those of its neighbors. However, the diversity, composition, and treatments of neighboring plots are rarely included in analyses of experimental treatments. We analyzed a spatially gridded grassland nitrogen addition experiment and found that plant species richness and the composition of focal plots were influenced not just by their nitrogen treatment but also by the number of species in neighboring plots and their abundances. For each additional species in a focal plot's neighborhood, the species richness of the focal plot increased by 0.30 species. Control plots had a significant loss of species, at a rate of ~0.23 species per year during the 23-year experiment, but only when their neighborhoods had low species richness. Changes in the abundance of the three dominant species depended both on the nitrogen treatment of a focal plot and on their abundance in adjacent plots. Our analyses suggested that both the experimental nitrogen treatments and metacommunity processes codetermined plant species richness and plant species' abundances. Our findings suggested that analyzing many traditional field experiments with a metacommunity perspective may reveal a confounding of experimental treatments and provide empirical data to test metacommunity theory.


Subject(s)
Nitrogen , Plants , Biodiversity , Ecosystem
11.
Conserv Biol ; 36(5): e13901, 2022 10.
Article in English | MEDLINE | ID: mdl-35212024

ABSTRACT

Many species may face multiple distinct and persistent drivers of extinction risk, yet theoretical and empirical studies tend to focus on the single largest driver. This means that existing approaches potentially underestimate and mischaracterize future risks to biodiversity. We synthesized existing knowledge on how multiple drivers of extinction can interact to influence a species' overall extinction probability in a probabilistic model of extinction risk that incorporated the impacts of multiple drivers of extinction risk, their interactions, and their accumulative effects through time. We then used this model framework to explore how different threats, interactions between them, and time trends may affect a species' overall extinction probability. Multiple small threats together had potential to pose a large cumulative extinction risk; for example, 10 individual threats posed a 1% extinction risk each and cumulatively posed a 9.7% total extinction risk. Interactions among drivers resulted in escalated risk in some cases, and persistent threats with a small (1%) extinction risk each decade ultimately posed large extinction risk over 100 (9.6% total extinction risk) to 200 years (18.2% total extinction risk). By estimating long-term extinction risk posed by several different factors and their interactions, this approach provides a framework to identify drivers of extinction risk that could be proactively targeted to help prevent species currently of least concern from becoming threatened with extinction.


Muchas especies pueden enfrentarse a múltiples impulsores distintivos y persistentes del riesgo de extinción, aunque los estudios teóricos y empíricos tienden a enfocarse en el impulsor más relevante. Esto significa que las estrategias existentes tienen el potencial de subestimar y caracterizar erróneamente los riesgos para la biodiversidad en el futuro. Sintetizamos el conocimiento existente sobre cómo los múltiples impulsores de la extinción pueden interactuar para influir sobre la probabilidad general de extinción de una especie en un modelo probabilístico del riesgo de extinción, el cual incorporó los impactos de los múltiples impulsores del riesgo de extinción, sus interacciones y sus efectos acumulativos a través del tiempo. Después usamos este modelo para explorar cómo las diferentes amenazas, las interacciones entre ellas y las tendencias temporales pueden afectar la probabilidad general de extinción de una especie. El conjunto de múltiples amenazas pequeñas tuvo el potencial de representar un gran riesgo de extinción acumulativo; por ejemplo, cada una de diez amenazas individuales representó 1% de riesgo de extinción, y acumuladas representaron un riesgo total de extinción de 9.7%. Las interacciones entre los impulsores resultaron en un riesgo escalado en algunos casos, y las amenazas persistentes con un riesgo pequeño (1%) de extinción durante cada década al final representaron un gran riesgo de extinción después de 100 (9.6% del riesgo total de extinción) y 200 años (18.2% del riesgo total de extinción). Mediante la estimación del riesgo de extinción a largo plazo que presentan los diferentes factores y sus interacciones, esta estrategia proporciona un marco para identificar los impulsores del riesgo de extinción que podrían focalizarse proactivamente para ayudar a prevenir que las especies que actualmente están en menor riesgo se conviertan en especies amenazadas.


Subject(s)
Conservation of Natural Resources , Extinction, Biological , Biodiversity , Conservation of Natural Resources/methods , Probability
12.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845020

ABSTRACT

Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass. Our results suggest that biodiversity, likely in combination with the increased plant productivity caused by higher biodiversity, led to greater soil fertility. Moreover, plots with high plant functional diversity, those containing grasses, legumes, and forbs, accumulated significantly greater N, K, Ca, and Mg in the total nutrient pool (plant biomass and soil) than did plots containing just one of these three functional groups. Plant species in these functional groups had trade-offs between their tissue N content, tissue K content, and root mass, suggesting why species from all three functional groups were essential for regenerating soil fertility. Our findings suggest that efforts to regenerate soil C stores and soil fertility may be aided by creative uses of plant diversity.


Subject(s)
Environmental Restoration and Remediation/methods , Plants/metabolism , Soil/chemistry , Biodiversity , Biomass , Carbon/metabolism , Conservation of Natural Resources/methods , Ecosystem , Fabaceae/growth & development , Fertility/drug effects , Grassland , Nitrogen/analysis , Nitrogen/metabolism , Plant Development/drug effects , Poaceae/growth & development , Potassium/metabolism , Soil Microbiology
13.
Curr Biol ; 31(19): R1154-R1158, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34637721

ABSTRACT

A confluence of discoveries in ecology and agriculture suggests that biodiversity can help address the sustainability problems facing modern intensive agriculture. Here we explore several questions related to this possibility. Can increases in national crop diversity help increase the stability and security of national food systems? Can practices based on greater crop biodiversity produce yields that compete with those obtained through the long-standing, high-input monoculture model? What are the appropriate levels and combinations of crops to be used? We highlight recent research that suggests it is time to begin unlocking the agricultural potential of biodiversity - from the level of crop genetic diversity to species diversity - and to do so on spatial scales from individual fields to nations. Recent research suggests that the biodiversification of agriculture may lead to greater and more stable yields, decrease land clearing, and lower the use of harmful agrochemicals.


Subject(s)
Biodiversity , Crops, Agricultural , Agriculture , Ecosystem , Food Security , Food Supply
14.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972419

ABSTRACT

Agriculture is a major contributor to air pollution, the largest environmental risk factor for mortality in the United States and worldwide. It is largely unknown, however, how individual foods or entire diets affect human health via poor air quality. We show how food production negatively impacts human health by increasing atmospheric fine particulate matter (PM2.5), and we identify ways to reduce these negative impacts of agriculture. We quantify the air quality-related health damages attributable to 95 agricultural commodities and 67 final food products, which encompass >99% of agricultural production in the United States. Agricultural production in the United States results in 17,900 annual air quality-related deaths, 15,900 of which are from food production. Of those, 80% are attributable to animal-based foods, both directly from animal production and indirectly from growing animal feed. On-farm interventions can reduce PM2.5-related mortality by 50%, including improved livestock waste management and fertilizer application practices that reduce emissions of ammonia, a secondary PM2.5 precursor, and improved crop and animal production practices that reduce primary PM2.5 emissions from tillage, field burning, livestock dust, and machinery. Dietary shifts toward more plant-based foods that maintain protein intake and other nutritional needs could reduce agricultural air quality-related mortality by 68 to 83%. In sum, improved livestock and fertilization practices, and dietary shifts could greatly decrease the health impacts of agriculture caused by its contribution to reduced air quality.


Subject(s)
Agriculture/standards , Air Pollutants/analysis , Air Pollution/analysis , Food/standards , Health Status , Particulate Matter/analysis , Agriculture/methods , Agriculture/statistics & numerical data , Ammonia/analysis , Animals , Crops, Agricultural/metabolism , Disease/etiology , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Fertilizers , Geography , Humans , Livestock/metabolism , Mortality/trends , Particulate Matter/adverse effects , United States
15.
Ecology ; 102(6): e03332, 2021 06.
Article in English | MEDLINE | ID: mdl-33705570

ABSTRACT

Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (ß diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of ß diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher ß diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and ß diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and ß diversity lead to a positive diversity-stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.


Subject(s)
Biodiversity , Ecosystem
16.
Nature ; 588(7837): E13, 2020 12.
Article in English | MEDLINE | ID: mdl-33299195
17.
Science ; 370(6517): 705-708, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33154139

ABSTRACT

The Paris Agreement's goal of limiting the increase in global temperature to 1.5° or 2°C above preindustrial levels requires rapid reductions in greenhouse gas emissions. Although reducing emissions from fossil fuels is essential for meeting this goal, other sources of emissions may also preclude its attainment. We show that even if fossil fuel emissions were immediately halted, current trends in global food systems would prevent the achievement of the 1.5°C target and, by the end of the century, threaten the achievement of the 2°C target. Meeting the 1.5°C target requires rapid and ambitious changes to food systems as well as to all nonfood sectors. The 2°C target could be achieved with less-ambitious changes to food systems, but only if fossil fuel and other nonfood emissions are eliminated soon.


Subject(s)
Climate Change , Food Industry , Greenhouse Effect , Food Supply
18.
Oecologia ; 194(4): 735-744, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33130915

ABSTRACT

Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future.


Subject(s)
Ecosystem , Rain , Droughts , Plants , Poaceae , Reproducibility of Results
19.
Ecol Lett ; 23(12): 1756-1765, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32945098

ABSTRACT

Human disturbances alter the functioning and biodiversity of many ecosystems. These ecosystems may return to their pre-disturbance state after disturbance ceases; however, humans have altered the environment in ways that may change the rate or direction of this recovery. For example, human activities have increased supplies of biologically limiting nutrients, such as nitrogen (N) and phosphorus (P), which can reduce grassland diversity and increase productivity. We tracked the recovery of a grassland for two decades following an intensive agricultural disturbance under ambient and elevated nutrient conditions. Productivity returned to pre-disturbance levels quickly under ambient nutrient conditions, but nutrient addition slowed this recovery. In contrast, the effects of disturbance on diversity remained hidden for 15 years, at which point diversity began to increase in unfertilised plots. This work demonstrates that enrichment of terrestrial ecosystems by humans may alter the recovery of ecosystems and that disturbance effects may remain hidden for many years.


Subject(s)
Ecosystem , Soil , Biodiversity , Grassland , Nitrogen/analysis , Nutrients
20.
Glob Chang Biol ; 26(11): 6594-6603, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32871613

ABSTRACT

In most plant communities, the net effect of nitrogen enrichment is an increase in plant productivity. However, nitrogen enrichment also has been shown to decrease species richness and to acidify soils, each of which may diminish the long-term impact of nutrient enrichment on productivity. Here we use a long-term (20 year) grassland plant diversity by nitrogen enrichment experiment in Minnesota, United States (a subexperiment within the BioCON experiment) to quantify the net impacts of nitrogen enrichment on productivity, including its potential indirect effects on productivity via changes in species richness and soil pH over an experimental diversity gradient. Overall, we found that nitrogen enrichment led to an immediate positive increment in productivity, but that this effect became nonsignificant over later years of the experiment, with the difference in productivity between fertilized and unfertilized plots decreasing in proportion to nitrogen addition-dependent declines in soil pH and losses of plant diversity. The net effect of nitrogen enrichment on productivity could have been 14.5% more on average over 20 years in monocultures if not for nitrogen-induced decreases in pH and about 28.5% more on average over 20 years in 16 species communities if not for nitrogen-induced species richness losses. Together, these results suggest that the positive effects of nutrient enrichment on biomass production can diminish in their magnitude over time, especially because of soil acidification in low diversity communities and especially because of plant diversity loss in initially high diversity communities.


Subject(s)
Nitrogen , Soil , Biodiversity , Biomass , Ecosystem , Hydrogen-Ion Concentration , Minnesota
SELECTION OF CITATIONS
SEARCH DETAIL
...