Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 19(9): 6334-6337, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28220167

ABSTRACT

Ion migration in two fluorinated bioactive glasses of significantly different durability was modeled through molecular dynamics simulations. Whereas the very different biodegradation of these glasses cannot be explained on the basis of their structural features alone, the analysis of the diffusive data highlights a strong connection between the glass durability determined experimentally and the activation barriers for ion diffusion extracted by the simulations, clarifying the source of the different solubility and suggesting that "dynamical" descriptors of bioactivity could represent a key tool to predict the macroscopic behavior of a biomaterial, in some cases more effectively than with the current structural descriptors.


Subject(s)
Biocompatible Materials/chemistry , Ions/chemistry , Molecular Dynamics Simulation , Diffusion , Glass/chemistry
2.
J Phys Chem B ; 120(45): 11773-11780, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27809532

ABSTRACT

Understanding how calcium interacts with silica sources and influences their polycondensation in aqueous solutions is of central importance for the development of more effective biomaterials by sol-gel approaches. For this purpose, the atomic-scale evolutions of a calcium-containing precursor solution corresponding to a typical sol-gel bioactive glass and of a corresponding Ca-free solution were compared using reactive molecular dynamics simulations. The simulations highlight a significantly faster rate of condensation when calcium is present in the initial solution, resulting in the formation of large and ramified silica clusters within 5 ns, which are absent in the Ca-free system. This different behavior has been analyzed and interpreted in terms of the Ca-induced nanosegregation in calcium-rich and silica-rich regions, which promotes the condensation reactions within the latter. By identifying a possible mechanism behind the limited incorporation of calcium in the silica nanoclusters formed in the early stages of the sol-gel process, these results could guide further studies aimed at identifying favorable experimental conditions to enhance initial calcium incorporation and thus produce sol-gel biomaterials with improved properties.


Subject(s)
Biocompatible Materials/chemistry , Calcium/chemistry , Gels/chemical synthesis , Gels/chemistry , Glass/chemistry , Solutions
3.
J Mater Chem B ; 3(48): 9360-9373, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-32262935

ABSTRACT

The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of alternative biodegradable materials with higher biodegradability, such as biodegradable phosphate-based bioactive glasses, which can be a good candidate for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids. Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O-(45 -x)CaO-45P2O5-xCaF2, where x varies between 0-10 mol%. NMR and MD data reveal that the medium-range atomic-scale structure of these glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. The impact of fluoride on chemical dissolution of glasses has been studied in deionized water, acidic (pH = 3.0), neutral (pH = 7.4) and basic (pH = 9.0) buffer solutions, while the bioactivity and cytotoxicity of glasses has been studied in vitro through their apatite-forming ability in simulated body fluid (SBF) and cell culture tests on mesenchymal stem cells (MSCs), respectively. The macroscopic trends observed from various chemical dissolution and bioactivity studies are discussed on the basis of the effect of fluoride on the atomistic structure of glasses, such as F-induced phosphate network re-polymerization, in an attempt to establish composition-structure-property relationships for these biomaterials.

4.
Phys Chem Chem Phys ; 17(4): 2696-702, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25504287

ABSTRACT

Molecular dynamics simulations of Na(+)/H(+)-exchanged 45S5 Bioglass® models reveal that a large fraction of the hydroxyl groups introduced into the proton-exchanged, hydrated glass structure do not initially form covalent bonds with Si and P network formers but remain free and stabilised by the modifier metal cations, whereas substantial Si-OH and P-OH bonding is observed only at higher Na(+)/H(+) exchange levels. The strong affinity between free OH groups and modifier cations in the highly fragmented 45S5 glass structure appears to represent the main driving force for this effect. This suggests an alternative direct route for the formation of a repolymerised silica-rich gel in the early stages of the bioactive mechanism, not considered before, which does not require sequential repeated breakings of Si-O-Si bonds and silanol condensations.


Subject(s)
Alkalies/chemistry , Biocompatible Materials/chemistry , Ceramics/chemistry , Glass/chemistry , Molecular Dynamics Simulation , Silica Gel/chemistry , Molecular Conformation , Polymerization
5.
Acta Biomater ; 10(7): 3264-78, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24709542

ABSTRACT

We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed.


Subject(s)
Antioxidants/pharmacology , Biocompatible Materials , Glass , Silicates/chemistry , Strontium/chemistry , Zinc/chemistry , Cell Line, Tumor , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Powder Diffraction , Solubility , Spectroscopy, Fourier Transform Infrared
6.
Phys Chem Chem Phys ; 16(9): 3874-80, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24448341

ABSTRACT

Atomic-scale computer simulations have emerged as a powerful tool to probe at a very high resolution the structural and dynamical properties of amorphous and crystalline biomaterials with a direct impact on their biological activity. In particular, bioactive glasses (BGs) represent a target of high strategic importance for the simulations, due to the central role that they play in the broad arena of materials for repairing and regenerating tissues. Simulations aimed at understanding the properties of bioactive glasses thus reveal the potential, and also the limitations, of computational approaches to support the rational development of biomaterials. This perspective article examines several key challenges that computer simulations of BGs are currently dealing with and that will need to be effectively tackled in order to achieve further substantial progress in this field. Relevant examples are the identification of new structural descriptors, the modelling of ion migration, and the simulation of nanosized samples, which are discussed in relation to the underlying issues, such as the limited space and time scales that can be probed in atomic-scale simulations.


Subject(s)
Biocompatible Materials/chemistry , Glass/chemistry , Biocompatible Materials/metabolism , Ions/chemistry , Molecular Dynamics Simulation , Nanostructures/chemistry , Tissue Engineering
7.
J Phys Chem B ; 118(3): 833-44, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24364818

ABSTRACT

The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (n(P)) of the glass and its silicate network connectivity (N(BO)(Si)). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with ³¹P and ²9Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N(BO)(Si), n(P), and the silicate and phosphate speciations in a series of Na2O-CaO-SiO2-P2O5 glasses spanning 2.1 ≤ N(BO)(Si) ≤ 2.9 and variable P2O5 contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of n(P) at a fixed N(BO)(Si)-value, but is reduced slightly as N(BO)(Si) increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na2O-CaO-SiO2-P2O5 compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the n(Na)/n(Ca) molar ratio.


Subject(s)
Drug Design , Glass/chemistry , Molecular Dynamics Simulation , Magnetic Resonance Spectroscopy , Molecular Conformation , Silicates/chemistry
8.
J Phys Chem B ; 117(46): 14518-28, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24206236

ABSTRACT

The performances of silicate glasses as containment matrices or vectors of radioactive ions in nuclear waste storage and in situ radiotherapy are influenced by the effect of interstitial water on the glass durability. In order to assess how hydration determines changes to atomistic structural features which control the glass degradation, we have carried out molecular dynamics simulations of a typical yttrium aluminosilicate (YAS) glass employed in radiotherapy, incorporating different water contents. The analysis of the models allows us to discuss the way in which hydroxyl groups are distributed in the glass structure and modify or disrupt the aluminosilicate glass network. Hydration affects the silicate and aluminate connectivity to a different extent, resulting in a different degree of disruption (depolymerization) of the Si and Al network. The simulations also highlight a strong tendency of all hydrated compositions to form Y(3+)- and OH(-)-rich domains, separated from the aluminosilicate matrix. The implications of these structural effects for the durability and ion release behavior of the glass are discussed, as well as the vibrational signatures of the various hydrous species identified in the models.

9.
J Chem Phys ; 139(11): 114501, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-24070291

ABSTRACT

A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ~10(3) atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their application in different fields. In addition, as a first application of the present findings, the fully converged structure of the 45S5 glass was further analyzed to shed new light on several dissolution-related features whose interpretation has been rather controversial in the past.


Subject(s)
Ceramics/chemistry , Glass/chemistry , Oxides/chemistry , Silicates/chemistry , Cold Temperature , Freezing , Molecular Dynamics Simulation
10.
J Mater Chem B ; 1(24): 3073-3082, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-32261011

ABSTRACT

We report on the effect of varying the Zn2+/Mg2+ ratio on the structure and biodegradation of glasses in an alkali-free system designed in the glass forming region of diopside (CaMgSi2O6)-fluorapatite [Ca5(PO4)3F]-TCP (3CaO·P2O5). The zinc-containing glasses designed in the as-mentioned ternary system are potential materials for their application in bone regeneration and tissue engineering. The melt-quenched glasses with compositions (mol%), 36.07CaO - (19.24 -x) MgO -xZnO - 5.61P2O5- 38.49SiO2- 0.59CaF2, where x varies between 0 and 10, have been investigated for their structure by molecular dynamics simulations as well as by nuclear magnetic resonance spectroscopy. In all the investigated glasses silicate and phosphate components are mainly present as Q2 (Si) and Q0 (orthophosphate) species, respectively. Zinc retains structural features similar to magnesium, with predominant five-fold coordination. The apatite-forming ability of glasses has been investigated by X-ray diffraction and infrared spectroscopy after immersion of glass powders in simulated body fluids for time durations varying between 1 h and 7 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. The increasing Zn2+/Mg2+ ratio decreases the chemical degradation of glasses as well as reducing their apatite forming ability. The results allowed us to discuss the biodegradation of alkali-free bioactive glasses on the basis of the structural role of zinc and magnesium.

11.
J Phys Chem B ; 116(41): 12614-20, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-22978422

ABSTRACT

The low solubility (high durability) of yttrium aluminosilicate (YAS) glass is one of its most important properties for use in in situ radiotherapy. Simple parameters, such as silica or yttria content or network connectivity, are not sufficient to rationalize the dependence of the solubility on the glass composition observed experimentally. We performed classical molecular dynamics (MD) simulations of eight different YAS glasses of known solubility and analyzed the MD trajectories to identify specific structural features that are correlated and can be used to predict the solubility. We show that the (Si-)O-Si coordination number CN(SiOSi), the yttrium-yttrium clustering ratio R(YY), and the number of intratetrahedral O-Si-O bonds per yttrium atom N(intra) can be combined into a single structural descriptor s = f(CN(SiOSi),R(YY),N(intra)) with a high correlation with the solubility. The parameter s can thus be calculated from MD simulations and used to predict the solubility of YAS compositions, allowing one to adjust them to the range required by radiotherapy applications. For instance, its trend shows that high-silica- and low-yttria-content YAS glasses should be sufficiently durable for the radiotherapy application, although additional clinical considerations may set a lower limit to the yttria content.


Subject(s)
Aluminum Silicates/chemistry , Molecular Dynamics Simulation , Radiation-Sensitizing Agents/chemistry , Yttrium/chemistry , Aluminum Silicates/therapeutic use , Glass/chemistry , Molecular Conformation , Radiation-Sensitizing Agents/therapeutic use , Solubility , Yttrium/therapeutic use
12.
Methods Mol Biol ; 811: 285-301, 2012.
Article in English | MEDLINE | ID: mdl-22042686

ABSTRACT

The molecular dynamics method is a powerful computer simulation technique which provides access to the detailed time evolution (trajectory) of a system in specified conditions, such as a particular temperature or pressure. The full trajectory of the system can be analyzed using statistical mechanics tools to obtain thermodynamical quantities and dynamical properties; the mechanism of chemical reactions and other time-dependent processes, such as diffusion, can also be revealed in high detail. When applied to model extended and complex system such as biomaterials, MD simulations represent an invaluable tool to discover structure-activity relationships and rationalize biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Models, Chemical , Molecular Dynamics Simulation , Structure-Activity Relationship , Thermodynamics , Time Factors
13.
Phys Chem Chem Phys ; 13(39): 17749-55, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21887425

ABSTRACT

The incorporation of yttrium in bioactive glasses (BGs) could lead to a new generation of radionuclide vectors for cancer therapy, with high biocompatibility, controlled biodegradability and the ability to enhance the growth of new healthy tissues after the treatment with radionuclides. It is essential to assess whether and to what extent yttrium incorporation affects the favourable properties of the BG matrix: ideally, one would like to combine the high surface reactivity typical of BGs with a slow release of radioactive yttrium. Molecular Dynamics simulations show that, compared to a BG composition with the same silica fraction, incorporation of yttrium results in two opposing effects on the glass durability: a more fragmented silicate network (leading to lower durability) and a stronger yttrium-mediated association between separate silicate fragments (leading to higher durability). The simulations also highlight a high site-selectivity and some clustering of yttrium cations, which are likely linked to the observed slow rate of yttrium released from related Y-BG compositions. Optimisation of yttrium BG compositions for radiotherapy applications thus depends on the delicate balance between these effects.


Subject(s)
Glass/chemistry , Neoplasms/diagnostic imaging , Radioisotopes/chemistry , Yttrium/chemistry , Drug Delivery Systems , Molecular Dynamics Simulation , Molecular Structure , Neoplasms/drug therapy , Radionuclide Imaging
14.
J Phys Chem B ; 115(9): 2038-45, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21322627

ABSTRACT

Fluorinated bioactive glasses (FBGs) combine the antibacterial properties of fluorine with the biological activity of phosphosilicate glasses. Because their biomedical application depends on the release of fluorine, the detailed characterization of the fluorine environment in FBGs is the key to understand their properties. Car-Parrinello molecular dynamics (CPMD) simulations have been performed on a 45S5 Bioglass composition in which 10 mol % of the CaO has been replaced with CaF(2), and have allowed us to resolve some longstanding issues about the atomic structure of fluorinated bioglasses, with particular regard to the structural role of fluorine. F is coordinated almost entirely to the modifier ions Na and Ca, with a very small amount of residual Si-F bonds, whose fraction only becomes significant in the melt precursor. High temperature leads to Si-F bonds in both tetra- (SiO(3)F) and, less frequently, penta-coordinated (SiO(4)F and SiO(3)F(2)) complexes, showing that formation of these bonds through the expansion of the SiO(4) coordination shell is generally less favored. There is no evidence for preferential bonding of F to either modifier ion: almost all F atoms are coordinated to both calcium and sodium in a "mixed state", rather than exclusively to either, as had been conjectured. We discuss the consequences of these findings on the properties of fluorine-containing bioglasses.


Subject(s)
Anti-Bacterial Agents/chemistry , Fluorine/chemistry , Glass/chemistry , Molecular Dynamics Simulation , Calcium/chemistry , Molecular Conformation , Oxygen/chemistry , Silicates/chemistry , Silicon/chemistry , Sodium/chemistry , Temperature
15.
J Chem Phys ; 133(1): 014701, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20614978

ABSTRACT

The mechanism of sodium migration in low-silica alkali-alkaline earth silicate glasses is investigated through Car-Parrinello molecular dynamics (MD) simulations. The transport of sodium to the glass surface and its subsequent release is critical for the use of these glasses in biomedical applications. The analysis of the MD trajectory, mainly through a combination of space and time correlation functions, reveals a complex mechanism, with some common features to the migration in mixed-alkali silicate glasses and several important differences. The low site selectivity of Na cations in this glass allows them to use both Na and Ca sites in the migration process. The high fragmentation and the corresponding flexibility of the silicate network enable an additional mechanism for ion migration, not favorable in the more rigid network of common higher-silica glasses, involving the creation of empty transient sites through the correlated forward-backward motion of an Na or a Ca cation. We also show that because sodium migration must involve an undercoordinated intermediate, sharing of oxygen atoms in the initial and final coordination shells is a way to reduce the energetic cost of losing favorable Na-O interactions and Na migration proceeds between corner-sharing NaO(x) polyhedra, where x=5-7. For these low-silica compositions, the present simulations suggest that due to the participation of calcium in the Na migration, the latter will not be significantly hampered by extensive mixing with less mobile Ca ions, or, in any event, the effect will be less marked than for higher-silica glasses.

16.
Langmuir ; 26(1): 545-51, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19725567

ABSTRACT

The surface of a bioactive (45S) and a bioinactive (65S) glass composition has been modeled using shell-model classical molecular dynamics simulations. Direct comparison of the two structures allowed us to identify the potential role of specific surface features in the processes leading to integration of a bioglass implant with the host tissues, focusing in particular on the initial dissolution of the glass network. The simulations highlight the critical role of network fragmentation and sodium enrichment of the surface in determining the rapid hydrolysis and release of silica fragments in solution, characteristic of highly bioactive compositions. On the other hand, no correlation has been found between the surface density of small (two- and three-membered) rings and bioactivity, thus suggesting that additional factors need to be taken into account to fully understand the role of these sites in the mechanism leading to calcium phosphate deposition on the glass surface.


Subject(s)
Ceramics/chemistry , Ceramics/metabolism , Molecular Dynamics Simulation , Silicates/chemistry , Silicates/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Surface Properties , Water/chemistry
17.
Nat Mater ; 8(7): 585-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19465917

ABSTRACT

The interaction of water with metal oxide surfaces is of fundamental importance to various fields of science, ranging from geophysics to catalysis and biochemistry. In particular, the discovery that TiO(2) photocatalyses the dissociation of water has triggered broad interest and intensive studies of water adsorption on TiO(2) over decades. So far, these studies have mostly focused on the (110) surface of the most stable polymorph of TiO(2), rutile, whereas it is the metastable anatase form that is generally considered photocatalytically more efficient. The present combined experimental (scanning tunnelling microscopy) and theoretical (density functional theory and first-principles molecular dynamics) study gives atomic-scale insights into the adsorption of water on anatase (101), the most frequently exposed surface of this TiO(2) polymorph. Water adsorbs as an intact monomer with a computed binding energy of 730 meV. The charge rearrangement at the molecule-anatase interface affects the adsorption of further water molecules, resulting in short-range repulsive and attractive interactions along the [010] and directions, respectively, and a locally ordered (2x2) superstructure of molecular water.

18.
ACS Appl Mater Interfaces ; 1(6): 1324-33, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20355929

ABSTRACT

The hydration of the surface of a highly bioactive silicate glass was modeled using ab initio (Car-Parrinello) molecular dynamics (CPMD) simulations, focusing on the structural and chemical modifications taking place at the glass-water interface immediately after contact and on the way in which they can affect the bioactivity of these materials. The adsorption of a water dimer and trimer on the dry surface was studied first, followed by the extended interface between the glass and liquid water. The CPMD trajectories provide atomistic insight into the initial stages relevant to the biological activity of these materials: following contact of the glass with an aqueous (physiological) medium, the initial enrichment of the surface region in Na+ cations establishes dominant Na+-water interactions at the surface, which allow water molecules to penetrate into the open glass network and start its partial dissolution. The model of a Na/H-exchanged interface shows that Ca2+-water interactions are mainly established after the dominant fraction of Na is leached into the solution. Another critical role of modifier cations was highlighted: they provide the Lewis acidity necessary to neutralize OH(-) produced by water dissociation and protonation of nonbridging oxygen (NBO) surface sites. The CPMD simulations also highlighted an alternative, proton-hopping mechanism by which the same process can take place in the liquid water film. The main features of the bioactive glass surface immediately after contact with an aqueous medium, as emerged from the simulations, are (a) silanol groups formed by either water dissociation at undercoordinated Si sites or direct protonation of NBOs, (b) OH(-) groups generally stabilized by modifier cations and coupled with the protonated NBOs, and (c) small rings, relatively stable and unopened even after exposure to liquid water. The possible role and effect of these sites in the bioactive process are discussed.


Subject(s)
Ceramics/chemistry , Models, Chemical , Water/chemistry , Computer Simulation , Surface Properties
19.
J Chem Phys ; 129(8): 084504, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-19044832

ABSTRACT

Classical and ab initio molecular dynamics (MD) simulations have been carried out to investigate the effect of a different treatment of interatomic forces in modeling the structural properties of multicomponent glasses and melts. The simulated system is a soda-lime phosphosilicate composition with bioactive properties. Because the bioactivity of these materials depends on their medium-range structural features, such as the network connectivity and the Q(n) distribution (where Q(n) is a tetrahedral species bonded to n bridging oxygens) of silicon and phosphorus network formers, it is essential to assess whether, and up to what extent, classical potentials can reproduce these properties. The results indicate that the inclusion of the oxide ion polarization through a shell-model (SM) approach provides a more accurate representation of the medium-range structure compared to rigid-ion (RI) potentials. Insight into the causes of these improvements has been obtained by comparing the melt-and-quench transformation of a small sample of the same system, modeled using Car-Parrinello MD (CPMD), to the classical MD runs with SM and RI potentials. Both classical potentials show some limitations in reproducing the highly distorted structure of the melt denoted by the CPMD runs; however, the inclusion of polarization in the SM potential results in a better and qualitatively correct dynamical balance between the interconversion of Q(n) species during the cooling of the melt. This effect seems to reflect the slower decay of the fraction of structural defects during the cooling with the SM potential. Because these transient defects have a central role in mediating the Q(n) transformations, as previously proposed and confirmed by the current simulations, their presence in the melt is essential to produce an accurate final distribution of Q(n) species in the glass.


Subject(s)
Ceramics/chemistry , Glass/chemistry , Ions , Chemistry, Physical/methods , Computer Simulation , Models, Chemical , Molecular Conformation , Oxygen/chemistry , Silicates/chemistry , Silicon/chemistry , Software , Temperature
20.
J Phys Chem B ; 111(51): 14256-64, 2007 Dec 27.
Article in English | MEDLINE | ID: mdl-18047313

ABSTRACT

Molecular dynamics simulations of four bioactive silicate glasses containing between 0 (P0) and 12 (P12) mol % P2O5 have been carried out in order to elucidate the structural role of phosphorus in these materials. In particular, we have focused on structural features which can have a direct role in the bioactive mechanism of dissolution and bone bonding. The higher affinity of modifier Na and Ca cations for coordinating phosphate rather than silicate, together with the formation of P-O-Si linkages, lead to increasing repolymerization of the silicate network with increasing P2O5 content, which in principle would represent a negative effect of P inclusion on the glass bioactivity. However, this effect is counterbalanced by the concomitant increase in the amount of free orthophosphate groups, whose fast release is deemed to enhance the bioactivity. The strong affinity of the orthophosphates for calcium ions leads to a clear tendency toward separation of silicate-rich and phosphate-rich phases for the P12 composition. Although this could reduce the bioactivity in the case of P12, in general, the favorable balance between the effects mentioned above should result in a positive effect of partial Si --> P substitution on the glass bioactivity.


Subject(s)
Biocompatible Materials/chemistry , Glass/chemistry , Phosphorus/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , Cations , Computer Simulation , Molecular Conformation , Phosphates/chemistry , Phosphorus Compounds/chemistry , Polymers/chemistry , Sodium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...