Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(14): 22964-22981, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475393

ABSTRACT

The effective sea-surface skylight reflectance (ρ) is an important parameter for removing the contribution of surface-reflected radiance when measuring water-leaving radiance (Lw) using the above-water approach (AWA). Radiative simulations and field measurements show that ρ varies spectrally. To improve the determination of Lw (and then remote sensing reflectance, Rrs) from the AWA, we further developed a wavelength-dependent model for ρ to remove surface-reflected radiance, which is applied with a spectral optimization approach for the determination of Rrs. Excellent agreement was achieved between the AWA-derived and skylight-blocked approach (SBA)-obtained Rrs (coefficient of determination > 0.92, mean absolute percentage deviation < ∼ 11% for Rrs > 0.0005 sr-1), even during high wave conditions. We found that the optimization approach with the new ρ model worked very well for a wide range of water types and observation geometries. For developing remote sensing algorithms and evaluating satellite products, it would be beneficial to apply this approach to current and historical above-water in situ measurements of Rrs to improve the quality of these data. In addition, this approach could also increase the number of useable spectra where previously rendered unusable when processed with a traditional scheme.

2.
Sensors (Basel) ; 23(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36617057

ABSTRACT

This study assesses the ability of a new active fluorometer, the LabSTAF, to diagnostically assess the physiology of freshwater cyanobacteria in a reservoir exhibiting annual blooms. Specifically, we analyse the correlation of relative cyanobacteria abundance with photosynthetic parameters derived from fluorescence light curves (FLCs) obtained using several combinations of excitation wavebands, photosystem II (PSII) excitation spectra and the emission ratio of 730 over 685 nm (Fo(730/685)) using excitation protocols with varying degrees of sensitivity to cyanobacteria and algae. FLCs using blue excitation (B) and green−orange−red (GOR) excitation wavebands capture physiology parameters of algae and cyanobacteria, respectively. The green−orange (GO) protocol, expected to have the best diagnostic properties for cyanobacteria, did not guarantee PSII saturation. PSII excitation spectra showed distinct response from cyanobacteria and algae, depending on spectral optimisation of the light dose. Fo(730/685), obtained using a combination of GOR excitation wavebands, Fo(GOR, 730/685), showed a significant correlation with the relative abundance of cyanobacteria (linear regression, p-value < 0.01, adjusted R2 = 0.42). We recommend using, in parallel, Fo(GOR, 730/685), PSII excitation spectra (appropriately optimised for cyanobacteria versus algae), and physiological parameters derived from the FLCs obtained with GOR and B protocols to assess the physiology of cyanobacteria and to ultimately predict their growth. Higher intensity LEDs (G and O) should be considered to reach PSII saturation to further increase diagnostic sensitivity to the cyanobacteria component of the community.


Subject(s)
Cyanobacteria , Phycobilisomes , Fluorescence , Phycobilisomes/metabolism , Photosynthesis/physiology , Cyanobacteria/metabolism , Photosystem II Protein Complex/metabolism , Light
3.
Sci Total Environ ; 854: 158757, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108866

ABSTRACT

Primary production (PP) is highly sensitive to changes in the ecosystem and can be used as an early warning indicator for disturbance in the marine environment. Historic indicators of good environmental status of the north-east (NE) Atlantic and north-west (NW) European Seas suggested that daily PP should not exceed 2-3 g C m-2 d-1 during phytoplankton blooms and that annual rates should be <300 g C m-2 yr-1. We use 21 years of Copernicus Marine Service (CMEMS) Ocean Colour data from September 1997 to December 2018 to assess areas in the NE Atlantic with similar peak, climatology, phenology and annual PP values. Daily and annual thresholds of the 90th percentile (P90) of PP are defined for these areas and PP values above these thresholds indicate disturbances, both natural and anthropogenic, in the marine environment. Two case studies are used to test the validity and accuracy of these thresholds. The first is the eruption of the volcano Eyjafjallajökull, which deposited large volumes of volcanic dust (and therefore iron) into the NE Atlantic during April and May 2010. A clear signature in both PP and chlorophyll-a (Chl a) was evident from 28th April to 6th May and from 18th to 27th May 2010, when PP exceeded the PP P90 threshold for the region, which was comparatively more sensitive than Chl a P90 as an indicator of this disturbance. The second case study was for the riverine input of total nitrogen and phosphorus, along the Wadden Sea coast in the North Sea. During years when total nitrogen and phosphorus were above the climatology maximum, there was a lag signature in both PP and Chl a when PP exceeded the PP P90 threshold defined for the study area which was slightly more sensitive than Chl a P90. This technique represents an accurate means of determining disturbances in the environment both in the coastal and offshore waters in the NE Atlantic using remotely sensed ocean colour data.

4.
Opt Express ; 30(25): 45648-45675, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522967

ABSTRACT

Fiducial reference measurements are in-situ data traceable to metrology standards, with associated uncertainties. This paper presents the methodology used to derive the uncertainty budget for underway, above-water measurements from the Seabird Hyperspectral Surface Acquisition System deployed on an Atlantic Meridional Transect in 2018. The average uncertainty of remote sensing reflectance for clear sky days was ∼ 6% at wavelengths < 490 nm and ∼ 12% at wavelengths > 550 nm. The environmental variability such as sun position, wind speed and skylight distribution caused the greatest uncertainty. The different components of the uncertainty budget are critically assessed to indicate how the measurement procedure could be improved through reducing the principal uncertainty sources.

5.
J Plankton Res ; 44(3): 365-385, 2022.
Article in English | MEDLINE | ID: mdl-35664085

ABSTRACT

Compared to other methods to monitor and detect cyanobacteria in phytoplankton populations, fluorometry gives rapid, robust and reproducible results and can be used in situ. Fluorometers capable of providing biomass estimates and physiological information are not commonly optimized to target cyanobacteria. This study provides a detailed overview of the fluorescence kinetics of algal and cyanobacterial cultures to determine optimal optical configurations to target fluorescence mechanisms that are either common to all phytoplankton or diagnostic to cyanobacteria. We confirm that fluorescence excitation channels targeting both phycocyanin and chlorophyll a associated to the Photosystem II are required to induce the fluorescence responses of cyanobacteria. In addition, emission channels centered at 660, 685 and 730 nm allow better differentiation of the fluorescence response between algal and cyanobacterial cultures. Blue-green actinic light does not yield a robust fluorescence response in the cyanobacterial cultures and broadband actinic light should be preferred to assess the relation between ambient light and photosynthesis. Significant variability was observed in the fluorescence response from cyanobacteria to the intensity and duration of actinic light exposure, which needs to be taken into consideration in field measurements.

6.
Opt Express ; 25(24): A1079-A1095, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29220986

ABSTRACT

Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m-1 and a precision of about 0.0025 m-1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.

7.
Environ Sci Technol ; 51(18): 10449-10458, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28752764

ABSTRACT

We report novel in situ speciated observations of monoterpenes (α- and ß-pinene, myrcene, δ3-carene, ocimene, limonene) in seawater and air during three cruises in the Arctic and Atlantic Oceans, in/over generally oligotrophic waters. Oceanic concentrations of the individual monoterpenes ranged from below the detection limit of <1 pmol L-1 to 5 pmol L-1, with average concentrations of between 0.5 and 2.9 pmol L-1. After careful filtering for contamination, atmospheric mixing ratios varied from below the detection limit (<1 pptv) to 5 pptv, with averages of 0.05-5 pptv; these levels are up to 2 orders of magnitude lower than those reported previously. This could be at least partly due to sampling over waters with much lower biological activity than in previous studies. Unlike in previous studies, no clear relationships of the monoterpenes with biological variables were found. Based on our measured seawater concentrations and a global model simulation, we estimate total global marine monoterpene emissions of 0.16 Tg C yr-1, similar to a previous bottom-up estimate based on laboratory monoculture studies but 2 orders of magnitude lower than a previous top-down estimate of 29.5 Tg C yr-1.


Subject(s)
Monoterpenes/analysis , Arctic Regions , Atlantic Ocean , Bridged Bicyclo Compounds , Environmental Monitoring
8.
Harmful Algae ; 67: 92-106, 2017 07.
Article in English | MEDLINE | ID: mdl-28755724

ABSTRACT

A 21-year time series of phytoplankton community structure was analysed in relation to Phaeocystis spp. to elucidate its contribution to the annual carbon budget at station L4 in the western English Channel (WEC). Between 1993-2014 Phaeocystis spp. contributed ∼4.6% of the annual phytoplankton carbon and during the March - May spring bloom, the mean Phaeocystis spp. biomass constituted 17% with a maximal contribution of 47% in 2001. Upper maximal weekly values above the time series mean ranged from 63 to 82% of the total phytoplankton carbon (∼42-137mg carbon (C)m-3) with significant inter-annual variability in Phaeocystis spp. Maximal biomass usually occurred by the end of April, although in some cases as early as mid-April (2007) and as late as late May (2013). The effects of elevated pCO2 on the Phaeocystis spp. spring bloom were investigated during a fifteen-day semi-continuous microcosm experiment. The phytoplankton community biomass was estimated at ∼160mgCm-3 and was dominated by nanophytoplankton (40%, excluding Phaeocystis spp.), Phaeocystis spp. (30%) and cryptophytes (12%). The smaller fraction of the community biomass comprised picophytoplankton (9%), coccolithophores (3%), Synechococcus (3%), dinoflagellates (1.5%), ciliates (1%) and diatoms (0.5%). Over the experimental period, total biomass increased significantly by 90% to ∼305mgCm-3 in the high CO2 treatment while the ambient pCO2 control showed no net gains. Phaeocystis spp. exhibited the greatest response to the high CO2 treatment, increasing by 330%, from ∼50mgCm-3 to over 200mgCm-3 and contributing ∼70% of the total biomass. Taken together, the results of our microcosm experiment and analysis of the time series suggest that a future high CO2 scenario may favour dominance of Phaeocystis spp. during the spring bloom. This has significant implications for the formation of hypoxic zones and the alteration of food web structure including inhibitory feeding effects and lowered fecundity in many copepod species.


Subject(s)
Biomass , Carbon Dioxide/pharmacology , Eutrophication/drug effects , Phytoplankton/growth & development , Seasons , Carbonates/metabolism , Chlorophyll A/metabolism , England , Geography , Linear Models , Phytoplankton/drug effects , Species Specificity , Time Factors
9.
PLoS One ; 8(5): e61550, 2013.
Article in English | MEDLINE | ID: mdl-23658696

ABSTRACT

In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km(2) in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.


Subject(s)
Biodiversity , Biomass , Animals , Atlantic Ocean , Biota , Ecosystem , Seawater/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...