Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Archaeol Anthropol Sci ; 14(10): 209, 2022.
Article in English | MEDLINE | ID: mdl-36212164

ABSTRACT

Evaluating error that arises through the aggregation of data recorded by multiple observers is a key consideration in many metric and geometric morphometric analyses of stone tool shape. One of the most common approaches involves the convergence of observers for repeat trails on the same set of artefacts: however, this is logistically and financially challenging when collaborating internationally and/or at a large scale. We present and evaluate a unique alternative for testing inter-observer error, involving the development of 3D printed copies of a lithic reference collection for distribution among observers. With the aim of reducing error, clear protocols were developed for photographing and measuring the replicas, and inter-observer variability was assessed on the replicas in comparison with a corresponding data set recorded by a single observer. Our results demonstrate that, when the photography procedure is standardized and dimensions are clearly defined, the resulting metric and geometric morphometric data are minimally affected by inter-observer error, supporting this method as an effective solution for assessing error under collaborative research frameworks. Collaboration is becoming increasingly important within archaeological and anthropological sciences in order to increase the accessibility of samples, encourage dual-project development between foreign and local researchers and reduce the carbon footprint of collection-based research. This study offers a promising validation of a collaborative research design whereby researchers remotely work together to produce comparable data capturing lithic shape variability. Supplementary Information: The online version contains supplementary material available at 10.1007/s12520-022-01676-2.

2.
Sci Rep ; 12(1): 3689, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256702

ABSTRACT

Eastern Africa has played a prominent role in debates about human evolution and dispersal due to the presence of rich archaeological, palaeoanthropological and palaeoenvironmental records. However, substantial disconnects occur between the spatial and temporal resolutions of these data that complicate their integration. Here, we apply high-resolution climatic simulations of two key parameters, mean annual temperature and precipitation, and a biome model, to produce a highly refined characterisation of the environments inhabited during the eastern African Middle Stone Age. Occupations are typically found in sub-humid climates and landscapes dominated by or including tropical xerophytic shrubland. Marked expansions from these core landscapes include movement into hotter, low-altitude landscapes in Marine Isotope Stage 5 and cooler, high-altitude landscapes in Marine Isotope Stage 3, with the recurrent inhabitation of ecotones between open and forested habitats. Through our use of high-resolution climate models, we demonstrate a significant independent relationship between past precipitation and patterns of Middle Stone Age stone tool production modes overlooked by previous studies. Engagement with these models not only enables spatiotemporally explicit examination of climatic variability across Middle Stone Age occupations in eastern Africa but enables clearer characterisation of the habitats early human populations were adapted to, and how they changed through time.


Subject(s)
Archaeology , Climate , Africa, Eastern , Ecosystem , Forests , Humans
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1849): 20200485, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35249393

ABSTRACT

Homo sapiens have adapted to an incredible diversity of habitats around the globe. This capacity to adapt to different landscapes is clearly expressed within Africa, with Late Pleistocene Homo sapiens populations occupying savannahs, woodlands, coastlines and mountainous terrain. As the only area of the world where Homo sapiens have clearly persisted through multiple glacial-interglacial cycles, Africa is the only continent where classic refugia models can be formulated and tested to examine and describe changing patterns of past distributions and human phylogeographies. The potential role of refugia has frequently been acknowledged in the Late Pleistocene palaeoanthropological literature, yet explicit identification of potential refugia has been limited by the patchy nature of palaeoenvironmental and archaeological records, and the low temporal resolution of climate or ecological models. Here, we apply potential climatic thresholds on human habitation, rooted in ethnographic studies, in combination with high-resolution model datasets for precipitation and biome distributions to identify persistent refugia spanning the Late Pleistocene (130-10 ka). We present two alternate models suggesting that between 27% and 66% of Africa may have provided refugia to Late Pleistocene human populations, and examine variability in precipitation, biome and ecotone distributions within these refugial zones. This article is part of the theme issue 'Tropical forests in the deep human past'.


Subject(s)
Ecosystem , Refugium , Africa , Archaeology , Humans , Phylogeography
4.
Artif Life ; : 1-19, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35148391

ABSTRACT

Simulations of evolutionary dynamics often employ white noise as a model of stochastic environmental variation. Whilst white noise has the advantages of being simply generated and analytically tractable, empirical analyses demonstrate that most real environmental time series have power spectral densities consistent with pink or red noise, in which lower frequencies contribute proportionally greater amplitudes than higher frequencies. Simulated white noise environments may therefore fail to capture key components of real environmental time series, leading to erroneous results. To explore the effects of different noise colours on evolving populations, a simple evolutionary model of the interaction between life-history and the specialism-generalism axis was developed. Simulations were conducted using a range of noise colours as the environments to which agents adapted. Results demonstrate complex interactions between noise colour, reproductive rate, and the degree of evolved generalism; importantly, contradictory conclusions arise from simulations using white as opposed to red noise, suggesting that noise colour plays a fundamental role in generating adaptive responses. These results are discussed in the context of previous research on evolutionary responses to fluctuating environments, and it is suggested that Artificial Life as a field should embrace a wider spectrum of coloured noise models to ensure that results are truly representative of environmental and evolutionary dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...