Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 12(4): e1005580, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27093273

ABSTRACT

People with HIV infection are at increased risk for community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) skin and soft tissue infections (SSTIs). Lower CD4 T-cell counts, higher peak HIV RNA levels and epidemiological factors may be associated with increased risk but no specific immune defect has been identified. We aimed to determine the immunologic perturbations that predispose HIV-infected people to MRSA SSTIs. Participants with or without HIV infection and with MRSA SSTI, MRSA colonization or negative for MRSA were enrolled. Peripheral blood and skin biopsies from study participants were collected. Flow cytometry, flow cytometry with microscopy, multiplex assays of cell culture supernatants and immunohistochemistry were used to evaluate the nature of the immune defect predisposing HIV-infected people to MRSA infections. We found deficient MRSA-specific IFNγ+ CD4 T-cell responses in HIV-infected people with MRSA SSTIs compared to MRSA-colonized participants and HIV-uninfected participants with MRSA SSTIs. These IFNγ+ CD4 T cells were less polyfunctional in HIV-infected participants with SSTIs compared to those without SSTIs. However, IFNγ responses to cytomegalovirus and Mycobacterium avium antigens and MRSA-specific IL-17 responses by CD4 T cells were intact. Upon stimulation with MRSA, peripheral blood mononuclear cells from HIV-infected participants produced less IL-12 and IL-15, key drivers of IFNγ production. There were no defects in CD8 T-cell responses, monocyte responses, opsonization, or phagocytosis of Staphylococcus aureus. Accumulation of CD3 T cells, CD4 T cells, IL-17+ cells, myeloperoxidase+ neutrophils and macrophage/myeloid cells to the skin lesions were similar between HIV-infected and HIV-uninfected participants based on immunohistochemistry. Together, these results indicate that MRSA-specific IFNγ+ CD4 T-cell responses are essential for the control of initial and recurrent MRSA infections in HIV-infected people.


Subject(s)
Coinfection/immunology , HIV Infections/immunology , Immunocompromised Host/immunology , Staphylococcal Infections/immunology , Th1 Cells/immunology , Flow Cytometry , Humans , Immunohistochemistry , Methicillin-Resistant Staphylococcus aureus , Prospective Studies
2.
J Infect Dis ; 212(4): 578-84, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25701868

ABSTRACT

Systemic immune activation, a major determinant of human immunodeficiency virus (HIV) disease progression, is the result of a complex interplay between viral replication, dysregulation of the immune system, and microbial translocation due to gut mucosal damage. Although human genetic variants influencing HIV load have been identified, it is unknown how much the host genetic background contributes to interindividual differences in other determinants of HIV pathogenesis such as gut damage and microbial translocation. Using samples and data from 717 untreated participants in the Swiss HIV Cohort Study and a genome-wide association study design, we searched for human genetic determinants of plasma levels of intestinal fatty acid-binding protein (I-FABP/FABP2), a marker of gut damage, and of soluble CD14 (sCD14), a marker of lipopolysaccharide bioactivity and microbial translocation. We also assessed the correlations between HIV load, sCD14, and I-FABP. Although we found no genome-wide significant determinant of the tested plasma markers, we observed strong associations between sCD14 and both HIV load and I-FABP, shedding new light on the relationships between processes that drive progression of untreated HIV infection.


Subject(s)
Anti-HIV Agents/administration & dosage , Genetic Predisposition to Disease , HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Virus Replication/physiology , Adult , Anti-HIV Agents/therapeutic use , Biomarkers/blood , Cohort Studies , Fatty Acid-Binding Proteins/blood , Fatty Acid-Binding Proteins/metabolism , Female , Gene Expression Regulation/physiology , Genotype , HIV Infections/epidemiology , HIV Infections/immunology , Humans , Lipopolysaccharide Receptors/blood , Lipopolysaccharide Receptors/metabolism , Male , Switzerland/epidemiology , Translocation, Genetic , Viral Load
3.
Nature ; 511(7511): 601-5, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25043006

ABSTRACT

Inflammation in HIV infection is predictive of non-AIDS morbidity and death, higher set point plasma virus load and virus acquisition; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection, also provide target cells for the virus during acute infection, impair CD4 T-cell recovery, and are associated with disease progression. Here we manipulated IFN-I signalling in rhesus macaques (Macaca mulatta) during simian immunodeficiency virus (SIV) transmission and acute infection with two complementary in vivo interventions. We show that blockade of the IFN-I receptor caused reduced antiviral gene expression, increased SIV reservoir size and accelerated CD4 T-cell depletion with progression to AIDS despite decreased T-cell activation. In contrast, IFN-α2a administration initially upregulated expression of antiviral genes and prevented systemic infection. However, continued IFN-α2a treatment induced IFN-I desensitization and decreased antiviral gene expression, enabling infection with increased SIV reservoir size and accelerated CD4 T-cell loss. Thus, the timing of IFN-induced innate responses in acute SIV infection profoundly affects overall disease course and outweighs the detrimental consequences of increased immune activation. Yet, the clinical consequences of manipulation of IFN signalling are difficult to predict in vivo and therapeutic interventions in human studies should be approached with caution.


Subject(s)
Disease Progression , Interferon-alpha/therapeutic use , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus/immunology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Interferon-alpha/pharmacology , Kaplan-Meier Estimate , Signal Transduction/drug effects , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...