Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Biol (Camb) ; 1(5-6): 371-81, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20023744

ABSTRACT

Cell penetrating peptides (CPPs) have been developed as vehicles for payload delivery into cells in culture and in animals. However several biologic features limit their usefulness in living animals. Activatable cell penetrating peptides (ACPPs) are polycationic CPPs whose adsorption and cellular uptake are minimized by a covalently attached polyanionic inhibitory domain. Cleavage of the linker connecting the polyanionic and polycationic domains by specific proteases (tumor associated matrix metalloproteases discussed herein) dissociates the polyanion and enables the cleaved ACPP to enter cells. In contrast to their CPP counterpart, ACPPs are relatively nonadherent and distributed uniformly to normal tissues. While nonaarginine (r(9)) CPP administered intravenously into mice initially bind to the local vasculature and redistribute to the liver, where >90% of the injected dose accumulates 30 min after injection. Regardless of the presence of the polyanionic inhibitory domain, confocal imaging of live tissues reveals that the majority of the ACPP and CPP remain in punctate organelles, presumably endosomes. Therefore further improvements in the efficiency of delivery to the cytosol and nucleus are necessary. In addition to improved target specificity, a major advantage of ACPPs over CPPs for potential clinical applications is reduced toxicity. Systemically administered r(9) CPP causes acute toxicity in mice at a dose 4-fold lower than the MMP cleavable ACPP, a complication not observed with an uncleavable ACPP presumably because the polycationic charge remains masked systemically. These data suggest that ACPPs have greater potential than CPPs for systemic delivery of imaging and therapeutic agents.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacokinetics , Drug Delivery Systems/methods , Neoplasms/metabolism , Animals , Cell Line, Tumor , Humans , Metabolic Clearance Rate , Mice , Organ Specificity , Tissue Distribution
2.
Anal Chim Acta ; 593(1): 82-91, 2007 Jun 12.
Article in English | MEDLINE | ID: mdl-17531827

ABSTRACT

A chemical sensor was developed to detect the explosive 2,4,6-trinitrotoluene (TNT) utilizing planar integrated optical waveguide (IOW) attenuated total reflection spectrometry. Submicron thick films of organically modified sol-gel polymers were deposited on the waveguide surface as the sensing layer. Sol-gels were molecularly imprinted for TNT using covalently bound template molecules linked to the matrix through 1 or 2 carbamate linkages. Upon chemical cleavage of the template and displacement of the TNT-like pendant groups from the matrix, shape-selective binding sites were created that possess a primary amine group. The amine was used to deprotonate bound TNT yielding an anionic form that absorbs visible light. Binding of TNT and subsequent conversion to the anion results in the attenuation of light propagating through the waveguide, thus creating a spectrophotometric device. Sensitivity can be achieved by taking advantage of the substantial pathlength provided by the use of single mode IOWs. The limit-of-detection to gas-phase TNT was found to be five parts-per-billion (ppbV) in ambient air at a flow rate of 40 mL min(-1) given a 60 s sampling time. The sensor is highly selective for TNT due to the selectivity of binding site recognition of TNT and the subsequent generation of the TNT anion. Response to TNT is not reversible which results in an integrating sensor device which, in theory, can improve the ability to detect small amounts of the explosive if the exposure time is sufficient in length.

SELECTION OF CITATIONS
SEARCH DETAIL
...