Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Bioeng ; 119(1): 299-314, 2022 01.
Article in English | MEDLINE | ID: mdl-34713893

ABSTRACT

This paper presents a straightforward approach for measuring and quantifying orthogonality directly in complex cell culture fluids (CCFs) without the requirement for tracking the retention behaviors of large sets of proteins. Null-producing CCFs were fractionated using linear salt gradients at constant pH on a set of multimodal resins. Fractions were then analyzed by ultraperformance-reversed phase liquid chromatography and the resulting chromatograms provided host cell protein (HCP) "fingerprints." Using these fingerprints, an inner product vector-based approach was employed to quantify the degree of orthogonality between pairs of resins and operating conditions for these large HCP protein sets. To compare resin orthogonality behavior in different expression systems, the Chinese hamster ovary and Pichia pastoris null-producing CCFs were examined. Orthogonality in multimodal systems was found to strongly depend on the expression system and the HCPs being screened. We also identified several unexpected pairs of multimodal resins within the same family that exhibited significant orthogonality. Furthermore, "self-orthogonality" was evaluated between resins operated at different pHs, and important operating regimes were identified for maximizing orthogonal selectivities. The framework developed in this paper for calculating orthogonality without the need for labor-intensive HCP tracking has important implications for efficient process development and resin/operating condition selection for both monoclonal antibody (mAb) polishing steps and non-mAb processes. In addition, this study provides a tool to unlock the untapped potential of multimodal resins by aiding in their rational selection and incorporation. Finally, the orthogonality framework here can facilitate the development of sets of next-generation multimodal resins specifically designed to provide highly orthogonal and efficient separations tailored for different expression systems.


Subject(s)
Cell Culture Techniques/methods , Chromatography, Reverse-Phase/methods , High-Throughput Screening Assays/methods , Recombinant Proteins , Animals , CHO Cells , Chromatography, High Pressure Liquid/methods , Cricetinae , Cricetulus , Culture Media/chemistry , Hydrogen-Ion Concentration , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Saccharomycetales
2.
Biotechnol Bioeng ; 116(9): 2178-2190, 2019 09.
Article in English | MEDLINE | ID: mdl-31081177

ABSTRACT

Integrated designs of chromatographic processes for purification of biopharmaceuticals provides potential gains in operational efficiency and reductions of costs and material requirements. We describe a combined method using screening and in silico algorithms for ranking chromatographic steps to rapidly design orthogonally selective integrated processes for purifying protein therapeutics from both process- and product-related impurities. IFN-α2b produced in Pichia pastoris containing a significant product variant challenge was used as a case study. The product and product-related variants were screened on a set of 14 multimodal, ion exchange, and hydrophobic charge induction chromatography resins under various pH and salt linear gradient conditions. Data generated from reversed-phase chromatography of the fractions collected were used to generate a retention database for IFN-α2b and its variants. These data, in combination with a previously constructed process-related impurity database for P. pastoris, were input into an in silico process development tool that generated and ranked all possible integrated chromatographic sequences for their ability to remove both process and product-related impurities. Top-ranking outputs guided the experimental refinement of two successful three step purification processes, one comprising all bind-elute steps and the other having two bind-elute steps and a flowthrough operation. This approach suggests a new platform-like approach for rapidly designing purification processes for a range of proteins where separations of both process- and product-related impurities are needed.


Subject(s)
Computer Simulation , Interferon-alpha/chemistry , Interferon-alpha/isolation & purification , Chromatography, Ion Exchange , Pichia , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
3.
Nat Biotechnol ; 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272677

ABSTRACT

Conventional manufacturing of protein biopharmaceuticals in centralized, large-scale, single-product facilities is not well-suited to the agile production of drugs for small patient populations or individuals. Previous solutions for small-scale manufacturing are limited in both process reproducibility and product quality, owing to their complicated means of protein expression and purification. We describe an automated, benchtop, multiproduct manufacturing system, called Integrated Scalable Cyto-Technology (InSCyT), for the end-to-end production of hundreds to thousands of doses of clinical-quality protein biologics in about 3 d. Unlike previous systems, InSCyT includes fully integrated modules for sustained production, efficient purification without the use of affinity tags, and formulation to a final dosage form of recombinant biopharmaceuticals. We demonstrate that InSCyT can accelerate process development from sequence to purified drug in 12 weeks. We used integrated design to produce human growth hormone, interferon α-2b and granulocyte colony-stimulating factor with highly similar processes on this system and show that their purity and potency are comparable to those of marketed reference products.

4.
Biotechnol Bioeng ; 115(8): 2048-2060, 2018 08.
Article in English | MEDLINE | ID: mdl-29679482

ABSTRACT

In this study, we describe a new approach for the characterization of process-related impurities along with an in silico tool to generate orthogonal, integrated downstream purification processes for biological products. A one-time characterization of process-related impurities from product expression in Pichia pastoris was first carried out using linear salt and pH gradients on a library of multimodal, salt-tolerant, and hydrophobic charge induction chromatographic resins. The Reversed-phase ultra-performance liquid chromatography (UPLC) analysis of the fractions from these gradients was then used to generate large data sets of impurity profiles. A retention database of the biological product was also generated using the same linear salt and pH gradients on these resins, without fraction collection. The resulting two data sets were then analyzed using an in silico tool, which incorporated integrated manufacturing constraints to generate and rank potential three-step purification sequences based on their predicted purification performance as well as whole-process "orthogonality" for impurity removal. Highly ranked sequences were further examined to identify templates for process development. The efficacy of this approach was successfully demonstrated for the rapid development of robust integrated processes for human growth hormone and granulocyte-colony stimulating factor.


Subject(s)
Biological Products/isolation & purification , Biological Products/metabolism , Biotechnology/methods , Pichia/growth & development , Pichia/metabolism , Technology, Pharmaceutical/methods , Chemical Precipitation , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Pichia/genetics , Salts
5.
J Chromatogr A ; 1340: 33-49, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24685162

ABSTRACT

A fully-mechanistic understanding of protein transport and sorption in chromatographic materials has remained elusive despite the application of modern continuum and molecular observation techniques. While measuring overall uptake rates in proteins in chromatographic media is relatively straightforward, quantifying mechanistic contributions is much more challenging. Further, at equilibrium in fully-loaded particles, measuring rates of kinetic exchange and diffusion can be very challenging. As models of multicomponent separations rely on accurate depictions of protein displacement and elution, a straightforward method is desired to measure the mobility of bound protein in chromatographic media. We have adapted fluorescence recovery after photobleaching (FRAP) methods to study transport and exchange of protein at equilibrium in a single particle. Further, we have developed a mathematical model to capture diffusion and desorption rates governing fluorescence recovery and investigate how these rates vary as a function of protein size, binding strength and media type. An emphasis is placed on explaining differences between polymer-modified and traditional media, which in the former case is characterized by rapid uptake, slow displacement and large elution pools, differences that have been postulated to result from steric and kinetic limitations. Finally, good qualitative agreement is achieved predicting flow confocal displacement profiles in polymer-modified materials, based solely on estimates of kinetic and diffusion parameters from FRAP observations.


Subject(s)
Chromatography , Proteins/chemistry , Adsorption , Diffusion , Fluorescence Recovery After Photobleaching , Ion Exchange Resins , Kinetics , Models, Chemical , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL