Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(2): e0211730, 2019.
Article in English | MEDLINE | ID: mdl-30716107

ABSTRACT

Wheat landraces, wild relatives and other 'exotic' accessions are important sources of new favorable alleles. The use of those exotic alleles is facilitated by having access to information on the association of specific genomic regions with desirable traits. Here, we conducted a genome-wide association study (GWAS) using a wheat panel that includes landraces, synthetic hexaploids and other exotic wheat accessions to identify loci that contribute to increases in grain yield in southern Australia. The 568 accessions were grown in the field during the 2014 and 2015 seasons and measured for plant height, maturity, spike length, spike number, grain yield, plant biomass, HI and TGW. We used the 90K SNP array and two GWAS approaches (GAPIT and QTCAT) to identify loci associated with the different traits. We identified 17 loci with GAPIT and 25 with QTCAT. Ten of these loci were associated with known genes that are routinely employed in marker assisted selection such as Ppd-D1 for maturity and Rht-D1 for plant height and seven of those were detected with both methods. We identified one locus for yield per se in 2014 on chromosome 6B with QTCAT and three in 2015, on chromosomes 4B and 5A with GAPIT and 6B with QTCAT. The 6B loci corresponded to the same region in both years. The favorable haplotypes for yield at the 5A and 6B loci are widespread in Australian accessions with 112 out of 153 carrying the favorable haplotype at the 5A locus and 136 out of 146 carrying the favorable haplotype at the 6A locus, while the favorable haplotype at 4B is only present in 65 out of 149 Australian accessions. The low number of yield QTL in our study corroborate with other GWAS for yield in wheat, where most of the identified loci have very small effects.


Subject(s)
Edible Grain/genetics , Triticum/genetics , Alleles , Australia , Chromosome Mapping , Genetic Association Studies/methods , Genome-Wide Association Study/methods , Genotype , Haplotypes/genetics , Linkage Disequilibrium/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Seasons , Seeds/genetics , South Australia
2.
Plant J ; 98(3): 555-570, 2019 05.
Article in English | MEDLINE | ID: mdl-30604470

ABSTRACT

To optimize shoot growth and structure of cereals, we need to understand the genetic components controlling initiation and elongation. While measuring total shoot growth at high throughput using 2D imaging has progressed, recovering the 3D shoot structure of small grain cereals at a large scale is still challenging. Here, we present a method for measuring defined individual leaves of cereals, such as wheat and barley, using few images. Plant shoot modelling over time was used to measure the initiation and elongation of leaves in a bi-parental barley mapping population under low and high soil salinity. We detected quantitative trait loci (QTL) related to shoot growth per se, using both simple 2D total shoot measurements and our approach of measuring individual leaves. In addition, we detected QTL specific to leaf elongation and not to total shoot size. Of particular importance was the detection of a QTL on chromosome 3H specific to the early responses of leaf elongation to salt stress, a locus that could not be detected without the computer vision tools developed in this study.


Subject(s)
Hordeum/anatomy & histology , Hordeum/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Triticum/genetics , Hordeum/growth & development , Plant Leaves/growth & development , Quantitative Trait Loci/genetics
3.
PLoS One ; 11(7): e0159374, 2016.
Article in English | MEDLINE | ID: mdl-27459317

ABSTRACT

Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat.


Subject(s)
Genetic Association Studies , Nitrogen/metabolism , Quantitative Trait Loci , Quantitative Trait, Heritable , Triticum/genetics , Triticum/metabolism , Biomass , Breeding , Chromosome Mapping , Crosses, Genetic , Edible Grain , Environment , Fertilizers , Genetic Linkage , Genotype , Triticum/growth & development
4.
BMC Plant Biol ; 16: 100, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27101979

ABSTRACT

BACKGROUND: Molecular markers and knowledge of traits associated with heat tolerance are likely to provide breeders with a more efficient means of selecting wheat varieties able to maintain grain size after heat waves during early grain filling. RESULTS: A population of 144 doubled haploids derived from a cross between the Australian wheat varieties Drysdale and Waagan was mapped using the wheat Illumina iSelect 9,000 feature single nucleotide polymorphism marker array and used to detect quantitative trait loci for heat tolerance of final single grain weight and related traits. Plants were subjected to a 3 d heat treatment (37 °C/27 °C day/night) in a growth chamber at 10 d after anthesis and trait responses calculated by comparison to untreated control plants. A locus for single grain weight stability was detected on the short arm of chromosome 3B in both winter- and autumn-sown experiments, determining up to 2.5 mg difference in heat-induced single grain weight loss. In one of the experiments, a locus with a weaker effect on grain weight stability was detected on chromosome 6B. Among the traits measured, the rate of flag leaf chlorophyll loss over the course of the heat treatment and reduction in shoot weight due to heat were indicators of loci with significant grain weight tolerance effects, with alleles for grain weight stability also conferring stability of chlorophyll ('stay-green') and shoot weight. Chlorophyll loss during the treatment, requiring only two non-destructive readings to be taken, directly before and after a heat event, may prove convenient for identifying heat tolerant germplasm. These results were consistent with grain filling being limited by assimilate supply from the heat-damaged photosynthetic apparatus, or alternatively, accelerated maturation in the grains that was correlated with leaf senescence responses merely due to common genetic control of senescence responses in the two organs. There was no evidence for a role of mobilized stem reserves (water soluble carbohydrates) in determining grain weight responses. CONCLUSIONS: Molecular markers for the 3B or 6B loci, or the facile measurement of chlorophyll loss over the heat treatment, could be used to assist identification of heat tolerant genotypes for breeding.


Subject(s)
Chromosomes, Plant/genetics , Edible Grain/genetics , Genes, Plant/genetics , Hot Temperature , Quantitative Trait Loci/genetics , Triticum/genetics , Adaptation, Physiological/genetics , Australia , Chlorophyll/metabolism , Chromosome Mapping , Crosses, Genetic , Edible Grain/growth & development , Genotype , Haploidy , Heat-Shock Response/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Polymorphism, Single Nucleotide , Seasons , Triticum/growth & development , Triticum/metabolism
5.
Theor Appl Genet ; 128(5): 953-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25716820

ABSTRACT

KEY MESSAGE: The research identified rye chromosome 4R arms associated with good pollinator traits, and demonstrated possible use of rye genetic resources to develop elite pollinators for hybrid wheat breeding. Bread wheat (Triticum aestivum) is a predominantly self-pollinating plant which has relatively small-sized anthers and produces a low number of pollen grains. These features limit the suitability of most wheat lines as pollinators for hybrid seed production. One strategy for improving the pollination ability of wheat is to introgress cross-pollination traits from related species. One such species is rye (Secale cereale L.), which has suitable traits such as high anther extrusion, long anthers containing large amounts of pollen and long pollen viability. Therefore, introducing these traits into wheat is of great interest in hybrid wheat breeding. Here, we investigated wheat-rye chromosome addition lines for the effects of rye chromosomes on anther and pollen development in wheat. Using a single nucleotide polymorphism genotyping array, we detected 984 polymorphic markers that showed expected syntenic relationships between wheat and rye. Our results revealed that the addition of rye chromosomes 1R or 2R reduced pollen fertility, while addition of rye chromosome 4R increased anther size by 16% and pollen grain number by 33%. The effect on anther length was associated with increases in both cell size and the number of endothecium cells and was attributed to the long arm of chromosome 4R. In contrast, the effect on pollen grain number was attributed to the short arm of chromosome 4R. These results indicate that rye chromosome 4R contains at least two genetic factors associated with increased anther size and pollen grain number that can favourably affect pollination traits in wheat.


Subject(s)
Chromosomes, Plant , Flowers/anatomy & histology , Hybridization, Genetic , Pollen/physiology , Secale/genetics , Triticum/genetics , Breeding , Genetic Markers , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...