Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(39): 36171-36178, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810692

ABSTRACT

Copper nanoparticles (CuNPs) and gold nanoclusters (AuNCs) show a high catalytic performance in generating hydrogen peroxide (H2O2), a property that can be exploited to kill disease-causing microbes and to carry carbon-free energy. Some combinations of NPs/NCs can generate synergistic effects to produce stronger antiseptics, such as H2O2 or other reactive oxygen species (ROS). Herein, we demonstrate a novel facile AuNC surface decoration method on the surfaces of CuNPs using galvanic displacement. The Cu-Au bimetallic NPs presented a high selective production of H2O2 via a two-electron (2e-) oxygen reduction reaction (ORR). Their physicochemical analyses were conducted by scanning electron microscopy (SEM), transmitting electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). With the optimized Cu-Au1.5NPs showing their particle sizes averaged in 53.8 nm, their electrochemical analysis indicated that the pristine AuNC structure exhibited the highest 2e- selectivity in ORR, the CuNPs presented the weakest 2e- selectivity, and the optimized Cu-Au1.5NPs exhibited a high 2e- selectivity of 95% for H2O2 production, along with excellent catalytic activity and durability. The optimized Cu-Au1.5NPs demonstrated a novel pathway to balance the cost and catalytic performance through the appropriate combination of metal NPs/NCs.

2.
PLoS Pathog ; 19(4): e1011332, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37043478

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.0030119.].

3.
Antibiotics (Basel) ; 12(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36978302

ABSTRACT

Clostridioides difficile infection (CDI) remains a significant healthcare burden. Non-toxigenic C. difficile (NTCD) strains have shown a benefit in preventing porcine enteritis and in human recurrent CDI. In this study, we evaluated the efficacy of metronidazole-resistant NTCD-E4 in preventing CDI facilitated by a range of antimicrobials in an in vitro human gut model. NTCD-E4 spores (at a dose of 107) were instilled 7 days before a clinical ribotype (RT) 027 (at the same dose) strain (210). In separate experiments, four different antimicrobials were used to perturb gut microbiotas; bacterial populations and cytotoxin production were determined using viable counting and Vero cell cytotoxicity, respectively. RT027 and NTCD-E4 proliferated in the in vitro model when inoculated singly, with RT027 demonstrating high-level cytotoxin (3-5-log10-relative units) production. In experiments where the gut model was pre-inoculated with NTCD-E4, RT027 was remained quiescent and failed to produce cytotoxins. NTCD-E4 showed mutations in hsmA and a gene homologous to CD196-1331, previously linked to medium-dependent metronidazole resistance, but lacked other metronidazole resistance determinants. This study showed that RT027 was unable to elicit simulated infection in the presence of NTCD-E4 following stimulation by four different antimicrobials. These data complement animal and clinical studies in suggesting NTCD offer prophylactic potential in the management of human CDI.

4.
Plasmid ; 76: 32-9, 2014 11.
Article in English | MEDLINE | ID: mdl-25175817

ABSTRACT

Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth.


Subject(s)
Drug Resistance, Bacterial/genetics , Plasmids/genetics , Salmonella typhimurium/genetics , Conjugation, Genetic , Gene Transfer, Horizontal , Integrons , Plasmids/drug effects , Salmonella typhimurium/pathogenicity , Sequence Analysis, DNA
5.
Genome Announc ; 1(4)2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23887910

ABSTRACT

Salmonella enterica serovar Typhimurium U288 has firmly established itself within the United Kingdom pig production industry. The prevalence of this highly pathogenic multidrug-resistant serovar at such a critical point in the food chain is therefore of great concern. To enhance our understanding of this microorganism, whole-genome and plasmid sequencing was performed.

6.
Virol J ; 8: 498, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22047448

ABSTRACT

BACKGROUND: Whole genome sequencing of bacteriophages suitable for biocontrol of pathogens in food products is a pre-requisite to any phage-based intervention procedure. Trials involving the biosanitization of Salmonella Typhimurium in the pig production environment identified one such candidate, ΦSH19. RESULTS: This phage was sequenced and analysis of its 157,785 bp circular dsDNA genome revealed a number of interesting features. ΦSH19 constitutes another member of the recently-proposed Myoviridae Vi01-like family of phages, containing S. Typhi-specific Vi01 and Shigella-specific SboM-AG3. At the nucleotide level ΦSH19 is highly similar to phage Vi01 (80-98% pairwise identity over the length of the genome), with the major differences lying in the region associated with host-range determination. Analyses of the proteins encoded within this region by ΦSH19 revealed a cluster of three putative tail spikes. Of the three tail spikes, two have protein domains associated with the pectate lyase family of proteins (Tsp2) and P22 tail spike family (Tsp3) with the prospect that these enable Salmonella O antigen degradation. Tail spike proteins of Vi01 and SboM-AG3 are predicted to contain conserved right-handed parallel ß-helical structures but the internal protein domains are varied allowing different host specificities. CONCLUSIONS: The addition or exchange of tail spike protein modules is a major contributor to host range determination in the Vi01-like phage family.


Subject(s)
Host Specificity , Salmonella Phages/growth & development , Salmonella Phages/genetics , Salmonella typhimurium/virology , Animals , DNA/chemistry , DNA/genetics , DNA, Circular/chemistry , DNA, Circular/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , Evolution, Molecular , Gene Order , Molecular Sequence Data , Recombination, Genetic , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Species Specificity , Viral Tail Proteins/genetics
7.
BMC Genomics ; 11: 214, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20353581

ABSTRACT

BACKGROUND: Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. RESULTS: Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. CONCLUSIONS: Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other Campylobacter bacteriophages, forming a highly conserved lineage of bacteriophages that predate upon campylobacters and indicating that highly adapted bacteriophage genomes can be stable over prolonged periods of time.


Subject(s)
Bacteriophages/genetics , Campylobacter/virology , Bacteriophages/pathogenicity , Conserved Sequence , Genome, Viral , Sequence Analysis , Viral Structural Proteins/genetics , Virulence
8.
PLoS Pathog ; 5(1): e1000253, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19119417

ABSTRACT

Phage therapy is the use of bacteriophages as antimicrobial agents for the control of pathogenic and other problem bacteria. It has previously been argued that successful application of phage therapy requires a good understanding of the non-linear kinetics of phage-bacteria interactions. Here we combine experimental and modelling approaches to make a detailed examination of such kinetics for the important food-borne pathogen Campylobacter jejuni and a suitable virulent phage in an in vitro system. Phage-insensitive populations of C. jejuni arise readily, and as far as we are aware this is the first phage therapy study to test, against in vitro data, models for phage-bacteria interactions incorporating phage-insensitive or resistant bacteria. We find that even an apparently simplistic model fits the data surprisingly well, and we confirm that the so-called inundation and proliferation thresholds are likely to be of considerable practical importance to phage therapy. We fit the model to time series data in order to estimate thresholds and rate constants directly. A comparison of the fit for each culture reveals density-dependent features of phage infectivity that are worthy of further investigation. Our results illustrate how insight from empirical studies can be greatly enhanced by the use of kinetic models: such combined studies of in vitro systems are likely to be an essential precursor to building a meaningful picture of the kinetic properties of in vivo phage therapy.


Subject(s)
Bacteriophages/pathogenicity , Biological Therapy , Host-Pathogen Interactions , Bacterial Infections/therapy , Campylobacter jejuni , Kinetics , Models, Biological
9.
PLoS Pathog ; 3(8): e119, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17722979

ABSTRACT

Campylobacter jejuni is a leading cause of food-borne illness. Although a natural reservoir of the pathogen is domestic poultry, the degree of genomic diversity exhibited by the species limits the application of epidemiological methods to trace specific infection sources. Bacteriophage predation is a common burden placed upon C. jejuni populations in the avian gut, and we show that amongst C. jejuni that survive bacteriophage predation in broiler chickens are bacteriophage-resistant types that display clear evidence of genomic rearrangements. These rearrangements were identified as intra-genomic inversions between Mu-like prophage DNA sequences to invert genomic segments up to 590 kb in size, the equivalent of one-third of the genome. The resulting strains exhibit three clear phenotypes: resistance to infection by virulent bacteriophage, inefficient colonisation of the broiler chicken intestine, and the production of infectious bacteriophage CampMu. These genotypes were recovered from chickens in the presence of virulent bacteriophage but not in vitro. Reintroduction of these strains into chickens in the absence of bacteriophage results in further genomic rearrangements at the same locations, leading to reversion to bacteriophage sensitivity and colonisation proficiency. These findings indicate a previously unsuspected method by which C. jejuni can generate genomic diversity associated with selective phenotypes. Genomic instability of C. jejuni in the avian gut has been adopted as a mechanism to temporarily survive bacteriophage predation and subsequent competition for resources, and would suggest that C. jejuni exists in vivo as families of related meta-genomes generated to survive local environmental pressures.


Subject(s)
Bacteriophage mu/pathogenicity , Campylobacter Infections/therapy , Campylobacter jejuni/genetics , Campylobacter jejuni/virology , Genetic Variation/genetics , Genomic Instability , Animals , Base Sequence , Biological Therapy , Campylobacter jejuni/growth & development , Chickens/microbiology , Food Contamination , Gene Rearrangement , Intestines/microbiology , Molecular Sequence Data , Poultry Diseases/immunology , Poultry Diseases/microbiology , Virus Replication/physiology
10.
Environ Microbiol ; 9(9): 2341-53, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17686030

ABSTRACT

The characteristics that allow one Campylobacter jejuni genotype to succeed over another under the influence of bacteriophage predation have been examined in experimental broiler chickens following the observation that this succession appeared to occur in naturally colonized broiler chicken flocks. Examination of three C. jejuni strains from a single flock indicated that horizontal transfer of at least 112 kb of genomic DNA from strain F2C10 (bacteriophage sensitive) to strain F2E1 (bacteriophage insensitive) had created strain F2E3. Transfer of this DNA was associated with acquisition of sensitivity to 6 of 25 lytic bacteriophage isolated from the same flock. All strains tested were capable of colonizing broiler chickens but cocolonization revealed that the bacteriophage sensitive strains F2E3 and F2C10 had a competitive advantage over the bacteriophage insensitive strain F2E1. With the addition of lytic bacteriophage the situation was completely reversed, with F2E1 dominating. The inability to replicate bacteriophage is associated with a significant fitness cost that renders the insensitive strain competitive only in the presence of bacteriophage. We demonstrate that interstrain recombination in vivo can generate genome diversity in C. jejuni and that bacteriophage predation is a strong selective pressure that influences the relative success of emergent strains in broiler chickens.


Subject(s)
Bacteriophages/genetics , Campylobacter jejuni/virology , Chickens/microbiology , Food Microbiology , Gastrointestinal Tract/microbiology , Gene Transfer, Horizontal/genetics , Animals , Campylobacter jejuni/classification , Campylobacter jejuni/genetics , Carrier State , Genetic Variation , Male
11.
Mutat Res ; 499(1): 85-95, 2002 Jan 29.
Article in English | MEDLINE | ID: mdl-11804607

ABSTRACT

In the 1970s, several thermosensitive alleles of dnaE (encoding the alpha-catalytic subunit of pol III) were isolated. Genetic characterization of these dnaE mutants revealed that some are mutator alleles at permissive temperature. We have determined the nucleotide changes of five such temperature sensitive mutator alleles (dnaE9, dnaE74, dnaE486, dnaE511, and dnaE1026) and find that most are single missense mutations. The exception is dnaE1026 which is a compound allele consisting of multiple missense mutations. When the previously characterized mutator alleles were moved into a lexA51(Def) recA730 strain, dnaE486, dnaE1026 and dnaE74 conferred a modest approximately two-six-fold increase in spontaneous mutagenesis when grown at the permissive temperature of 28 degrees C, while dnaE9 and dnaE511 actually resulted in a slight decrease in spontaneous mutagenesis. In isogenic DeltaumuDC derivatives, the level of spontaneous mutagenesis dropped significantly, although in each case, the overall mutator effect conferred by the dnaE allele was relatively larger, with all five dnaE alleles conferring an increased spontaneous mutation rate approximately 5-22-fold over the isogenic dnaE+ DeltaumuDC strain. Interestingly, the temperature sensitivity conferred by each allele varied considerably in the lexA51(Def) recA730 background and in many cases, this phenotype was dependent upon the presence of functional pol V (UmuD'2C). Our data suggest that pol V can compete effectively with the impaired alpha-subunit for a 3' primer terminus and as a result, a large proportion of the phenotypic effects observed with strains carrying missense temperature sensitive mutations in dnaE can, in fact, be attributed to the actions of pol V rather than pol III.


Subject(s)
DNA Polymerase III/genetics , Escherichia coli/physiology , Mutation , Bacterial Proteins/genetics , Catalytic Domain , Chromosome Mapping , Chromosomes, Bacterial , DNA Polymerase III/metabolism , DNA Transposable Elements , Phenotype , Rec A Recombinases/genetics , Sequence Analysis, DNA , Serine Endopeptidases/genetics , Temperature , Transduction, Genetic
12.
Mutat Res ; 499(1): 97-101, 2002 Jan 29.
Article in English | MEDLINE | ID: mdl-11804608

ABSTRACT

The temperature-sensitive DNA polymerase III (Pol III) encoded by the dnaE486 allele confers a spontaneous mutator activity in SOS-induced bacteria that is largely dependent upon DNA polymerase V (Pol V), encoded by umuD, C. This mutator activity is influenced by the defective proof-reading sub-unit of Pol III encoded by the dnaQ905 (mutD5) allele arguing that Pol V is most likely fixing mutations arising from mismatched primer termini produced by Pol III(486). The size of the dnaQ effect is, however, modest leaving open the possibility that Pol V may be responsible for some of the mutator effect by engaging in bursts of processive activity.


Subject(s)
DNA Polymerase III/genetics , DNA-Directed DNA Polymerase/physiology , Escherichia coli/physiology , Mutation , DNA Polymerase III/metabolism , Escherichia coli Proteins/genetics , Exodeoxyribonuclease V , Exodeoxyribonucleases/genetics , SOS Response, Genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...