Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Am Control Conf ; 2014: 2389-2394, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25400326

ABSTRACT

The chronic, relapsing nature of tobacco use represents a major challenge in smoking cessation treatment. Recently, novel intervention paradigms have emerged that seek to adjust treatments over time in order to meet a patient's changing needs. This article demonstrates that Hybrid Model Predictive Control (HMPC) offers an appealing framework for designing these optimized, time-varying smoking cessation interventions. HMPC is a particularly appropriate approach as it recognizes that intervention doses must be assigned in predetermined, discrete units while retaining receding-horizon, constraint-handling, and combined feedback and feedforward capabilities. Specifically, an intervention algorithm is developed here in which counseling and two pharmacotherapies are manipulated to reduce daily smoking and craving levels. The potential usefulness of such an intervention is illustrated through simulated treatment of a quit attempt in a hypothetical patient, which highlights that prioritizing reduction in craving over total daily smoking levels significantly reduces craving levels, suppresses relapse, and successfully rejects time-varying disturbances such as stress, all while adhering to several practical operational constraints and resource use considerations.

2.
Int J Control ; 87(7): 1423-1437, 2014.
Article in English | MEDLINE | ID: mdl-25382865

ABSTRACT

Cigarette smoking is a major global public health issue and the leading cause of preventable death in the United States. Toward a goal of designing better smoking cessation treatments, system identification techniques are applied to intervention data to describe smoking cessation as a process of behavior change. System identification problems that draw from two modeling paradigms in quantitative psychology (statistical mediation and self-regulation) are considered, consisting of a series of continuous-time estimation problems. A continuous-time dynamic modeling approach is employed to describe the response of craving and smoking rates during a quit attempt, as captured in data from a smoking cessation clinical trial. The use of continuous-time models provide benefits of parsimony, ease of interpretation, and the opportunity to work with uneven or missing data.

3.
Article in English | MEDLINE | ID: mdl-25571579

ABSTRACT

Behavioral scientists have historically relied on static modeling methodologies. The rise in mobile and wearable sensors has made intensive longitudinal data (ILD) -- behavioral data measured frequently over time -- increasingly available. Consequently, analytical frameworks are emerging that seek to reliably quantify dynamics reflected in these data. Employing an input-output perspective, dynamical systems models from engineering can characterize time-varying behaviors as processes of change. Specifically, ILD and parameter estimation routines from system identification can be leveraged together to offer parsimonious and quantitative descriptions of dynamic behavioral constructs. The utility of this approach for facilitating a better understanding of health behaviors is illustrated with two examples. In the first example, dynamical systems models are developed for Social Cognitive Theory (SCT), a prominent concept in behavioral science that considers interrelationships between personal factors, the environment, and behaviors. Estimated models are then obtained that explore the role of SCT in a physical activity intervention. The second example uses ILD to model day-to-day changes in smoking levels as a craving-mediated process of behavior change.


Subject(s)
Health Behavior , Models, Theoretical , Algorithms , Humans , Longitudinal Studies , Self Efficacy
4.
Nicotine Tob Res ; 16 Suppl 2: S159-68, 2014 May.
Article in English | MEDLINE | ID: mdl-24064386

ABSTRACT

INTRODUCTION: Self-regulation, a key component of the addiction process, has been challenging to model precisely in smoking cessation settings, largely due to the limitations of traditional methodological approaches in measuring behavior over time. However, increased availability of intensive longitudinal data (ILD) measured through ecological momentary assessment facilitates the novel use of an engineering modeling approach to better understand self-regulation. METHODS: Dynamical systems modeling is a mature engineering methodology that can represent smoking cessation as a self-regulation process. This article shows how a dynamical systems approach effectively captures the reciprocal relationship between day-to-day changes in craving and smoking. Models are estimated using ILD from a smoking cessation randomized clinical trial. RESULTS: A system of low-order differential equations is presented that models cessation as a self-regulatory process. It explains 87.32% and 89.16% of the variance observed in craving and smoking levels, respectively, for an active treatment group and 62.25% and 84.12% of the variance in a control group. The models quantify the initial increase and subsequent gradual decrease in craving occurring postquit as well as the dramatic quit-induced smoking reduction and postquit smoking resumption observed in both groups. Comparing the estimated parameters for the group models suggests that active treatment facilitates craving reduction and slows postquit smoking resumption. CONCLUSIONS: This article illustrates that dynamical systems modeling can effectively leverage ILD in order to understand self-regulation within smoking cessation. Such models quantify group-level dynamic responses in smoking cessation and can inform the development of more effective interventions in the future.


Subject(s)
Psychopharmacology/methods , Smoking Cessation/statistics & numerical data , Adult , Craving , Female , Humans , Male , Middle Aged , Models, Statistical , Research Design , Smoking/therapy , Smoking Cessation/methods , Systems Analysis
5.
Proc Am Control Conf ; : 1964-1969, 2013.
Article in English | MEDLINE | ID: mdl-24362946

ABSTRACT

Cigarette smoking remains a major public health issue. Despite a variety of treatment options, existing intervention protocols intended to support attempts to quit smoking have low success rates. An emerging treatment framework, referred to as adaptive interventions in behavioral health, addresses the chronic, relapsing nature of behavioral health disorders by tailoring the composition and dosage of intervention components to an individual's changing needs over time. An important component of a rapid and effective adaptive smoking intervention is an understanding of the behavior change relationships that govern smoking behavior and an understanding of intervention components' dynamic effects on these behavioral relationships. As traditional behavior models are static in nature, they cannot act as an effective basis for adaptive intervention design. In this article, behavioral data collected daily in a smoking cessation clinical trial is used in development of a dynamical systems model that describes smoking behavior change during cessation as a self-regulatory process. Drawing from control engineering principles, empirical models of smoking behavior are constructed to reflect this behavioral mechanism and help elucidate the case for a control-oriented approach to smoking intervention design.

SELECTION OF CITATIONS
SEARCH DETAIL
...