Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Membranes (Basel) ; 13(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37999359

ABSTRACT

The present work discusses the influence of the thickness of MF-4SK perfluorinated sulfonic cation-exchange membranes on their electrotransport properties in hydrochloric acid solutions. It is found that diffusion permeability and conductivity are primarily determined with the specific water content of the membranes and increase with their increase. Analysis of the contribution of reverse diffusion through the membrane to the value of the limiting current shows that it can reach 20% for membranes with a thickness of 60 µm. A study of the characteristics of the fuel cell with perfluorinated membranes of different thicknesses shows that the membrane thickness affects both the ohmic resistance of the membrane-electrode assembly and the diffusion limitations of proton transport in polymer electrolytes.

2.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894752

ABSTRACT

A series of C- and B-substituted nido-carborane derivatives with a pendant pyridyl group was prepared. The synthesized compounds were used as ligands in the complexation reactions with bis(triphenylphosphine)nickel(II) and palladium(II) chlorides to give six new metallacomplexes with unusual η5:κ1(N)-coordination of the metal center. The single crystal structures of 1-(NC5H4-2'-S)-1,2-C2B10H11, 1-(NC5H4-2'-CH2S)-1,2-C2B10H11, Cs [7-(NC5H4-2'-CH2S)-7,8-C2B9H11] closo- and nido-carboranes and 3-Ph3P-3-(4(7)-NC5H4-2'-S)-closo-3,1,2-NiC2B9H10 and 3-Ph3P-3-(4(7)-NC5H4-2'-CH2S)-closo-3,1,2-NiC2B9H10 metallacarboranes were determined using single crystal X-ray diffraction.


Subject(s)
Nickel , Palladium , Nickel/chemistry , Palladium/chemistry , Boron Compounds/chemistry , Pyridines
3.
Insects ; 13(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36555002

ABSTRACT

Nosemosis type C is a dangerous and widespread disease of the adult European honey bee Apis mellifera and is caused by the spore-forming intracellular parasite Vairimorpha (Nosema) ceranae. The search for new ways of therapy for this disease is complicated due to the seasonal availability of V. ceranae-infected insects as well as the lack of a developed system for the pathogen's cultivation. By carrying out trials which used different infectious dosages of the parasite, spore storage protocols, host age, and incubation temperatures, we present a simple, safe, and efficient method of V. ceranae propagation in artificially infected worker bees in the laboratory. The method is based on feeding the groups of adult worker bees with microsporidian spores and insect maintenance in plastic bottles at 33 °C. The source of the spores originated from the cadavers of infected insects from the previous round of cultivation, in which the infective spores persist for up to six months. An analysis of five independent cultivation rounds involving more than 2500 bees showed that the proposed protocol exploiting the dosage of one million spores per bee yielded over 60 million V. ceranae spores per bee, and most of the spore samples can be isolated from living insects.

4.
Membranes (Basel) ; 12(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36295694

ABSTRACT

The physicochemical and transport properties (ion-exchange capacity, water content, diffusion permeability, conductivity, and current-voltage characteristic) of a series of perfluorinated membranes with an inert fluoropolymer content from 0 to 40%, obtained by polymer solution casting, were studied. Based on the analysis of the parameters of the extended three-wire model, the effect of an inert component on the path of electric current flow in the membrane and its selectivity were estimated. The mechanical characteristics of the membranes, such as Young's modulus, yield strength, tensile strength, and relative elongation, were determined from the dynamometric curves. The optimal amount of the inert polymer in the perfluorinated membrane was found to be 20%, which does not significantly affect its structure and electrotransport properties but increases the elasticity of the obtained samples. Therefore, the perfluorinated membrane with 20% of inert fluoropolymer is promising for its application in redox flow batteries and direct methanol fuel cells.

5.
J Invertebr Pathol ; 191: 107755, 2022 06.
Article in English | MEDLINE | ID: mdl-35405136

ABSTRACT

Secretion of hexokinase (HK) by microsporidia into infected cells suggests an important role for this enzyme for the intracellular development of parasites. To verify whether the expression of HK-specific antibodies in the host cell cytoplasm can suppress the growth of microsporidia, we constructed an immune library of recombinant scFv fragments against the enzyme of the honey bee pathogen Vairimorpha (Nosema) ceranae (VcHK) with a representativeness of about 5 million bacterial transformants. Two variants of VcHK-specific recombinant antibodies were selected by library panning and expressed in lepidopteran Sf9 cell line. Infecting of cells expressing two selected and control scFv fragments with V. ceranae spores was followed by their cultivation for 4 days. Analysis of parasite ß-tubulin as well as spore wall protein SWP32 transcripts in infected cultures by reverse transcription PCR and real-time qPCR showed (1) V. ceranae growth in cells heterologous to bee pathogens, (2) its inhibition by one of the selected VcHK-specific recombinant antibodies. The latter result once again emphasizes an important role of microsporidia hexokinases in their relationships with infected host cells and suggests further focusing on the mechanisms of such suppression, as well as on the search for new V. ceranae - inhibiting scFv fragments.


Subject(s)
Nosema , Animals , Bees , Cell Culture Techniques , Hexokinase , Microsporidia , Nosema/physiology
6.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771096

ABSTRACT

9-HC≡CCH2Me2N-nido-7,8-C2B9H11, a previously described carboranyl terminal alkyne, was used for the copper(I)-catalyzed azide-alkyne cycloaddition with azido-3ß-cholesterol to form a novel zwitter-ionic conjugate of nido-carborane with cholesterol, bearing a 1,2,3-triazol fragment. The conjugate of nido-carborane with cholesterol, containing a charge-compensated group in the linker, can be used as a precursor for the preparation of liposomes for BNCT (Boron Neutron Capture Therapy). The solid-state molecular structure of a nido-carborane derivative with the 9-Me2N(CH2)2Me2N-nido-7,8-C2B9H11 terminal dimethylamino group was determined by single-crystal X-ray diffraction.


Subject(s)
Boron Compounds/chemical synthesis , Cholesterol/chemistry , Ions/chemistry , Boron Compounds/chemistry , Chemistry Techniques, Synthetic , Magnetic Resonance Spectroscopy , Molecular Structure , Triazoles/chemistry , X-Ray Diffraction
7.
Molecules ; 26(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498488

ABSTRACT

Novel zwitter-ionic nido-carboranyl azide 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was prepared by the reaction of 9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 with NaN3. The solid-state molecular structure of nido-carboranyl azide was determined by single-crystal X-ray diffraction. 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was used for the copper(I)-catalyzed azide-alkyne cycloaddition with phenylacetylene, alkynyl-3ß-cholesterol and cobalt/iron bis(dicarbollide) terminal alkynes to form the target 1,2,3-triazoles. The nido-carborane-cholesterol conjugate 9-3ß-Chol-O(CH2)C-CH-N3(CH2)3Me2N-nido-7,8-C2B9H11 with charge-compensated group in a linker can be used as a precursor for preparation of liposomes for Boron Neutron Capture Therapy (BNCT). A series of novel zwitter-ionic boron-enriched cluster compounds bearing a 1,2,3-triazol-metallacarborane-carborane conjugated system was synthesized. Prepared conjugates contain a large amount of boron atom in the biomolecule and potentially can be used for BNCT.


Subject(s)
Azides/chemistry , Boron Compounds/chemistry , Click Chemistry , Azides/chemical synthesis , Boron/chemistry , Boron Compounds/chemical synthesis , Boron Neutron Capture Therapy , Cholesterol/chemistry , Liposomes/chemistry , Molecular Structure
8.
Molecules ; 25(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291459

ABSTRACT

Complexation of the 8,8'-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides) [8,8'-(MeS)2-3,3'-M(1,2-C2B9H10)2]- (M = Co, Fe) with copper, silver, palladium and rhodium leads to the formation of the corresponding chelate complexes, which is accompanied by a transition from the transoid to the cisoid conformation of the bis(dicarbollide) complex. This transition is reversible and can be used in design of coordination-driven molecular switches based on transition metal bis(dicarbollide) complexes. The solid-state structures of {(Ph3P)ClPd[8,8'- (MeS)2-3,3'-Co(1,2-C2B9H10)2-κ2-S,S']} and {(COD)Rh[8,8'-(MeS)2-3,3'-Co(1,2-C2B9H10)2-κ2-S,S']} were determined by single crystal X-ray diffraction.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Iron/chemistry , Metals/chemistry
9.
Parasitol Res ; 119(5): 1433-1441, 2020 May.
Article in English | MEDLINE | ID: mdl-32200463

ABSTRACT

The reduction and specialization of the energy metabolism system is a common trait in the evolution of intracellular parasites. One group of fungi-related parasites, the Microsporidia, seems to have developed this trait far more than other eukaryotes. As an extreme adaptation for a parasitic lifestyle, some of them have completely lost the ability to synthesize ATP, relying heavily upon the metabolic processes of host cells to ensure their own development and reproduction. For a long time, only fragmentary data on the functioning and evolution of the energy metabolism system in microsporidia was available. However, the recent discovery of microsporidia-related microorganisms, the Cryptomycota and Aphelida, alongside with the genome sequencing and new data about basal groups in the Microsporidia has shed new light on this problem. Here, we review recent data about functioning of the energy metabolism system in microsporidia and closely related organisms, and discuss possible evolutionary pathways in the group.


Subject(s)
Energy Metabolism/genetics , Evolution, Molecular , Microsporidia/genetics , Microsporidia/metabolism , Fungi/classification , Fungi/genetics , Fungi/metabolism , Genome, Fungal/genetics , Host-Parasite Interactions , Loss of Function Mutation , Microsporidia/classification , Phylogeny
10.
J Invertebr Pathol ; 171: 107337, 2020 03.
Article in English | MEDLINE | ID: mdl-32035083

ABSTRACT

Microsporidia Nosema bombycis and Vairimorpha ceranae cause destructive epizootics of honey bees and silkworms. Insufficient efficiency of the antibiotic fumagillin against V. ceranae, its toxicity and the absence of effective methods of N. bombycis treatment demand the discovery of novel strategies to suppress infections of domesticated insects. RNA interference is one such novel treatment strategy. Another one implies that the intracellular development of microsporidia may be suppressed by single-chain antibodies (scFv fragments) against functionally important parasite proteins. Important components of microsporidian metabolism are non-mitochondrial, plastidic-bacterial ATP/ADP carriers. These membrane transporters import host-derived ATP and provide the capacity to pathogens for energy parasitism. Here, we analyzed membrane topology of four V. ceranae and three N. bombycis ATP/ADP transporters to construct two fusion proteins carrying their outer hydrophilic loops contacting with infected host cell cytoplasm. Interestingly, full-size genes of N. bombycis transporters may be derived from the Asian swallowtail Papilio xuthus genome sequencing project. Synthesis of the artificial genes was followed by overexpression of recombinant proteins in E. coli as insoluble inclusion bodies. The gene fragments encoding the loops of individual transporters were also effectively expressed in bacteria. The chimeric antigens may be used to construct immune libraries or select microsporidia-suppressing scFv fragments from synthetic, semisynthetic, naïve and immune antibody libraries. A further expression of such antibodies in insect cells may increase their resistance to microsporidial infections.


Subject(s)
Fungal Proteins/genetics , Gene Expression , Microsporidia/genetics , Nosema/genetics , Recombinant Fusion Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Microsporidia/chemistry , Microsporidia/metabolism , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial ADP, ATP Translocases/metabolism , Nosema/chemistry , Nosema/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
11.
Food Sci Nutr ; 8(1): 703-708, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993194

ABSTRACT

Sunn pest or Sunn bug, Eurygaster integriceps Put., salivary gland proteases are responsible for the deterioration of wheat flour quality during dough mixing, resulting from gluten hydrolysis. These proteases are highly heterogeneous and show low sensitivity to most types of proteinaceous inhibitors, meaning that such inhibitors cannot be used to prevent gluten damage. The present study describes the generation of a specific peptide antibody, raised against the active center of the recombinant gluten-hydrolyzing protease (GHP3). The recombinant protein, encoding two repeats of the GHP3 sequence element involved in forming the S4 pocket and binding of substrate at position P4, was designed and expressed in Escherichia coli. The antibodies raised to this recombinant protein showed inhibitory activity against the GHP3 protease. The results indicate that it is possible to design specific antibodies to inhibit wheat-bug gluten-hydrolyzing proteases.

12.
FEMS Microbiol Lett ; 366(14)2019 07 01.
Article in English | MEDLINE | ID: mdl-31437267

ABSTRACT

Beta/delta-agatoxin-1 of spider Agelena orientalis was expressed in entomopathogenic fungus Lecanicillium muscarium. To ensure secretion of the recombinant product by the fungus, the signal secretory peptide of the Metarhizium anisopliae Mcl1 protein was inserted into the sequence. For detection of the recombinant product and selection of transformants, the toxin sequence was also fused with eGFP at the C-terminus. The gene encoding the A. orientalis toxin with the Mcl1 protein signal peptide was commercially synthesized, amplified and cloned into the vector pBARGPE1 designed for heterologous expression under the control of the PgpdA promoter and the trpC terminator of Aspergillus nidulans. A double selection on selective medium and microscopic analysis of transformants allowed obtaining a mitotically stable recombinant strain of L. muscarium. The recognition of the Mcl1 derived signal peptide in the cells of transformants and effective secretion of the hybrid product was confirmed by immunoblotting.


Subject(s)
Ascomycota/genetics , Gene Expression , Recombinant Proteins , Spider Venoms/genetics , Amino Acid Sequence , Ascomycota/ultrastructure , Genes, Reporter , Spider Venoms/chemistry
13.
Parasitol Res ; 118(5): 1511-1518, 2019 May.
Article in English | MEDLINE | ID: mdl-30863897

ABSTRACT

The secretion of hexokinases (HKs) by microsporidia followed by their accumulation in insect host nuclei suggests that these enzymes play regulatory and catalytic roles in infected cells. To confirm whether HKs exert catalytic functions in insect cells, we expressed in E. coli the functionally active HKs of two entomopathogenic microsporidia, Nosema bombycis and Nosema ceranae, that cause silkworm and honey bee nosematoses. N. bombycis HK with C-terminal polyHis tag and N. ceranae enzyme with N-terminal polyHis tag were cloned into pOPE101 and pRSET vectors, respectively, and overexpressed. Specific activities of N. bombycis and N. ceranae enzymes isolated by metal chelate affinity chromatography were 29.2 ± 0.5 and 60.2 ± 1.2 U/mg protein at an optimal pH range of 8.5-9.5. The kinetic characteristics of the recombinant enzymes were similar to those of HKs from other parasitic and free-living organisms. N. bombycis HK demonstrated Km 0.07 ± 0.01 mM and kcat 1726 min-1 for glucose, and Km 0.39 ± 0.05 mM and kcat 1976 min-1 for ATP, at pH 8.8. N. ceranae HK showed Km 0.3 ± 0.04 mM and kcat 3293 min-1 for glucose, and Km 1.15 ± 0.11 mM and kcat 3732 min-1 for ATP, at the same pH value. These data demonstrate the capability of microsporidia-secreted HKs to phosphorylate glucose in infected cells, suggesting that they actively mediate the effects of the parasite on host metabolism. The present findings justify further study of the enzymes as targets to suppress the intracellular development of silkworm and honey bee pathogens.


Subject(s)
Bees/parasitology , Bombyx/parasitology , Hexokinase/biosynthesis , Nosema/metabolism , Animals , Escherichia coli/genetics , Glucose/metabolism , Hexokinase/genetics , Nosema/classification , Nosema/isolation & purification , Phosphorylation
14.
J Invertebr Pathol ; 143: 104-107, 2017 02.
Article in English | MEDLINE | ID: mdl-27989634

ABSTRACT

Paranosema (Nosema, Antonospora) locustae is the only microsporidium produced as a commercial product for biological control. Molecular mechanisms of the effects of this pathogen and other invertebrate microsporidia on host cells remain uncharacterized. Previously, we immunolocalized P. locustae hexokinase in nuclei of Locusta migratoria infected adipocytes. Here, the microsporidian protein was expressed in the yeast Pichia pastoris and in lepidopteran Sf9 cells. During heterologous expression, P. locustae hexokinase was accumulated in the nuclei of insect cells but not in yeast cell nuclei. This confirms nuclear localization of hexokinase secreted by microsporidia into infected host cells and suggests convenient model for its further study.


Subject(s)
Fungal Proteins/biosynthesis , Hexokinase/biosynthesis , Nosema/enzymology , Spodoptera/parasitology , Animals , Cell Nucleus/metabolism , Microsporidiosis/veterinary , Pichia
15.
Environ Sci Pollut Res Int ; 22(23): 19060-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26233749

ABSTRACT

Biogeochemical cycles of bromine (Br) and its quantitative requirements for different plant species are still studied poorly. There is a need to examine Br pathways in plants and evaluate the factors important for Br accumulation in a plant. In the present work, the effects of different Br compounds on an uptake of Br by two plant species (wheat and pea) that tolerate Br differently (pea is more sensitive to Br compared with wheat) have been studied. The growth medium was spiked with either KBr or NaBr at concentrations 0, 10, 50 and 100 mg/L. Elemental analysis of the plants was performed using inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-MS analytical techniques after leaching of the samples with tetramethyl ammonium hydroxide at mild temperature (60 °C). The experimental results have shown that wheat and pea seedlings can accumulate rather large amounts of Br. An increase of Br concentration in a plant was not always directly proportional to the variations in the Br concentration in the growth medium. In wheat, the greater part of Br was accumulated during first 7 days. In pea, the uptake of Br lasted until the end of the experiment. Certain differences in the ability of plants to accumulate Br were observed when the plants were grown in a medium spiked with different Br compounds. In most cases, Br accumulation was higher in the leaves of the plants grown in the medium spiked with KBr. The same tendency was observed for another halogen, chlorine (Cl).


Subject(s)
Bromides/metabolism , Pisum sativum/metabolism , Potassium Compounds/metabolism , Seedlings/metabolism , Sodium Compounds/metabolism , Triticum/metabolism , Bromides/pharmacology , Culture Media , Pisum sativum/drug effects , Pisum sativum/growth & development , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Potassium Compounds/pharmacology , Seedlings/drug effects , Sodium Compounds/pharmacology , Triticum/drug effects , Triticum/growth & development
16.
Dalton Trans ; 44(14): 6449-56, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25748107

ABSTRACT

Charge-compensated nido-carboranyl thioether ligands [7-MeS-10-Me2S-7,8-C2B9H10] and [7,8-(MeS)2-10-Me2S-7,8-C2B9H9] were prepared and fully characterized. They readily react with labile tungsten carbonyls to give σ-complexes - mono-substituted (CO)5W[7-MeS-10-Me2S-7,8-C2B9H10-κ(1)-S(1)] and (CO)5W[7,8-(MeS)2-10-Me2S-7,8-C2B9H9-κ(1)-S(1)] and chelate (CO)4W[7,8-(MeS)2-10-Me2S-7,8-C2B9H9-κ(2)-S(1),S(2)]. The synthesized metallocomplexes were characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction. The donor ability of the 7-methylsulfide-nido-carborane ligand is not sensitive to introduction of the charge-compensating dimethylsulfonium group.

17.
PLoS One ; 9(4): e93585, 2014.
Article in English | MEDLINE | ID: mdl-24705470

ABSTRACT

Molecular tools of the intracellular protozoan pathogens Apicomplexa and Kinetoplastida for manipulation of host cell machinery have been the focus of investigation for approximately two decades. Microsporidia, fungi-related microorganisms forming another large group of obligate intracellular parasites, are characterized by development in direct contact with host cytoplasm (the majority of species), strong minimization of cell machinery, and acquisition of unique transporters to exploit host metabolic system. All the aforementioned features are suggestive of the ability of microsporidia to modify host metabolic and regulatory pathways. Seven proteins of the microsporidium Antonospora (Paranosema) locustae with predicted signal peptides but without transmembrane domains were overexpressed in Escherichia coli. Western-blot analysis with antibodies against recombinant products showed secretion of parasite proteins from different functional categories into the infected host cell. Secretion of parasite hexokinase and α/ß-hydrolase was confirmed by immunofluorescence microscopy. In addition, this method showed specific accumulation of A. locustae hexokinase in host nuclei. Expression of hexokinase, trehalase, and two leucine-rich repeat proteins without any exogenous signal peptide led to their secretion in the yeast Pichia pastoris. In contrast, α/ß-hydrolase was not found in the culture medium, though a significant amount of this enzyme accumulated in the yeast membrane fraction. These results suggest that microsporidia possess a broad set of enzymes and regulatory proteins secreted into infected cells to control host metabolic processes and molecular programs.


Subject(s)
Apansporoblastina/metabolism , Fungal Proteins/metabolism , Host-Pathogen Interactions , Locusta migratoria/microbiology , Microsporidiosis/metabolism , Amino Acid Sequence , Animals , Apansporoblastina/genetics , Cloning, Molecular , Fungal Proteins/genetics , Host-Pathogen Interactions/genetics , Locusta migratoria/genetics , Locusta migratoria/metabolism , Metabolic Networks and Pathways/genetics , Microsporidia/genetics , Microsporidia/metabolism , Microsporidiosis/genetics , Molecular Sequence Data , Phylogeny , Pichia/genetics , Pichia/metabolism
18.
Dalton Trans ; 43(13): 5044-53, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24296615

ABSTRACT

A series of asymmetrically substituted sulfonium derivatives of nido-carborane [9-R(Me)S-nido-7,8-C2B9H11] (R = Et, Pr, Bu, Bn, CH=CH2, CH2CH=CH2, CH2C≡CH, CH=C=CH2) were prepared by alkylation of the 9-methylthio-nido-7,8-carborane. The synthesized compounds are the first examples of diastereomers combining nido-carborane and sulfonium chiral centers.

SELECTION OF CITATIONS
SEARCH DETAIL
...