Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Cardiovasc Drugs Ther ; 37(1): 25-37, 2023 02.
Article in English | MEDLINE | ID: mdl-34499283

ABSTRACT

PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among one of the most commonly prescribed medications for pain and inflammation. Diclofenac (DIC) is a commonly prescribed NSAID that is known to increase the risk of cardiovascular diseases. However, the mechanisms underlying its cardiotoxic effects remain largely unknown. In this study, we tested the hypothesis that chronic exposure to DIC increases oxidative stress, which ultimately impairs cardiovascular function. METHODS AND RESULTS: Mice were treated with DIC for 4 weeks and subsequently subjected to in vivo and in vitro functional assessments. Chronic DIC exposure resulted in not only systolic but also diastolic dysfunction. DIC treatment, however, did not alter blood pressure or electrocardiographic recordings. Importantly, treatment with DIC significantly increased inflammatory cytokines and chemokines as well as cardiac fibroblast activation and proliferation. There was increased reactive oxygen species (ROS) production in cardiomyocytes from DIC-treated mice, which may contribute to the more depolarized mitochondrial membrane potential and reduced energy production, leading to a significant decrease in sarcoplasmic reticulum (SR) Ca2+ load, Ca2+ transients, and sarcomere shortening. Using unbiased metabolomic analyses, we demonstrated significant alterations in oxylipin profiles towards inflammatory features in chronic DIC treatment. CONCLUSIONS: Together, chronic treatment with DIC resulted in severe cardiotoxicity, which was mediated, in part, by an increase in mitochondrial oxidative stress.


Subject(s)
Diclofenac , Heart Diseases , Mice , Animals , Diclofenac/toxicity , Diclofenac/metabolism , Inflammation Mediators/metabolism , Heart Diseases/chemically induced , Heart Diseases/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Cardiotoxicity , Myocytes, Cardiac , Anti-Inflammatory Agents, Non-Steroidal/toxicity
2.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509290

ABSTRACT

Sinoatrial node (SAN) cells are the heart's primary pacemaker. Their activity is tightly regulated by ß-adrenergic receptor (ß-AR) signaling. Adenylyl cyclase (AC) is a key enzyme in the ß-AR pathway that catalyzes the production of cAMP. There are current gaps in our knowledge regarding the dominant AC isoforms and the specific roles of Ca2+-activated ACs in the SAN. The current study tests the hypothesis that distinct AC isoforms are preferentially expressed in the SAN and compartmentalize within microdomains to orchestrate heart rate regulation during ß-AR signaling. In contrast to atrial and ventricular myocytes, SAN cells express a diverse repertoire of ACs, with ACI as the predominant Ca2+-activated isoform. Although ACI-KO (ACI-/-) mice exhibit normal cardiac systolic or diastolic function, they experience SAN dysfunction. Similarly, SAN-specific CRISPR/Cas9-mediated gene silencing of ACI results in sinus node dysfunction. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channels form functional microdomains almost exclusively with ACI, while ryanodine receptor and L-type Ca2+ channels likely compartmentalize with ACI and other AC isoforms. In contrast, there were no significant differences in T-type Ca2+ and Na+ currents at baseline or after ß-AR stimulation between WT and ACI-/- SAN cells. Due to its central characteristic feature as a Ca2+-activated isoform, ACI plays a unique role in sustaining the rise of local cAMP and heart rates during ß-AR stimulation. The findings provide insights into the critical roles of the Ca2+-activated isoform of AC in sustaining SAN automaticity that is distinct from contractile cardiomyocytes.


Subject(s)
Adenylyl Cyclases , Sinoatrial Node , Animals , Mice , Sinoatrial Node/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Calcium/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Protein Isoforms/metabolism
3.
Proc Natl Acad Sci U S A ; 119(36): e2206708119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36044551

ABSTRACT

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.


Subject(s)
Connectome , Heart Failure , Mitochondria, Heart , Sarcoplasmic Reticulum , Sick Sinus Syndrome , Sinoatrial Node , Animals , Heart Failure/pathology , Heart Failure/physiopathology , Mice , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/pathology , Sick Sinus Syndrome/pathology , Sick Sinus Syndrome/physiopathology , Sinoatrial Node/physiopathology
4.
STAR Protoc ; 3(2): 101301, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35463464

ABSTRACT

Intracellular pH (pHi) plays critical roles in the regulation of cardiac function. Methods and techniques for cardiac pHi measurement have continued to evolve since early 1960s. Fluorescent microscopy is the most recently developed technique with several advantages over other techniques including higher spatial and temporal resolutions, and feasibility for contracting cell measurement. Here, we describe detailed methods for mouse cardiomyocyte isolation, and simultaneous measurement and quantification of pHi and sarcomere length in contracting cardiomyocytes. For complete details on the use and execution of this protocol, please refer to Lyu et al. (2022).


Subject(s)
Myocytes, Cardiac , Animals , Hydrogen-Ion Concentration , Mice , Myocytes, Cardiac/physiology
5.
iScience ; 25(1): 103624, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35005560

ABSTRACT

The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and ß-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.

6.
Cardiovasc Res ; 118(1): 267-281, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33125066

ABSTRACT

AIMS: One of the hallmarks of myocardial infarction (MI) is excessive inflammation. During an inflammatory insult, damaged endothelial cells shed their glycocalyx, a carbohydrate-rich layer on the cell surface which provides a regulatory interface to immune cell adhesion. Selectin-mediated neutrophilia occurs as a result of endothelial injury and inflammation. We recently designed a novel selectin-targeting glycocalyx mimetic (termed DS-IkL) capable of binding inflamed endothelial cells. This study examines the capacity of DS-IkL to limit neutrophil binding and platelet activation on inflamed endothelial cells, as well as the cardioprotective effects of DS-IkL after acute myocardial infarction. METHODS AND RESULTS: In vitro, DS-IkL diminished neutrophil interactions with both recombinant selectin and inflamed endothelial cells, and limited platelet activation on inflamed endothelial cells. Our data demonstrated that DS-IkL localized to regions of vascular inflammation in vivo after 45 min of left anterior descending coronary artery ligation-induced MI. Further, findings from this study show DS-IkL treatment had short- and long-term cardioprotective effects after ischaemia/reperfusion of the left anterior descending coronary artery. Mice treated with DS-IkL immediately after ischaemia/reperfusion and 24 h later exhibited reduced neutrophil extravasation, macrophage accumulation, fibroblast and endothelial cell proliferation, and fibrosis compared to saline controls. CONCLUSIONS: Our findings suggest that DS-IkL has great therapeutic potential after MI by limiting reperfusion injury induced by the immune response.


Subject(s)
Anti-Inflammatory Agents/pharmacology , E-Selectin/metabolism , Endothelial Cells/drug effects , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Neutrophil Activation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Fibrosis , Humans , Male , Mice, Inbred C57BL , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/immunology , Myocardium/metabolism , Myocardium/pathology , Neutrophils/immunology , Neutrophils/metabolism , Platelet Activation/drug effects , Signal Transduction
7.
Heart Rhythm ; 19(2): 281-292, 2022 02.
Article in English | MEDLINE | ID: mdl-34634443

ABSTRACT

BACKGROUND: Long QT syndrome (LQTS) is a hereditary disease that predisposes patients to life-threatening cardiac arrhythmias and sudden cardiac death. Our previous study of the human ether-à-go-go related gene (hERG)-encoded K+ channel (Kv11.1) supports an association between hERG and RING finger protein 207 (RNF207) variants in aggravating the onset and severity of LQTS, specifically T613M hERG (hERGT613M) and RNF207 frameshift (RNF207G603fs) mutations. However, the underlying mechanistic underpinning remains unknown. OBJECTIVE: The purpose of the present study was to test the role of RNF207 in the function of hERG-encoded K+ channel subunits. METHODS: Whole-cell patch-clamp experiments were performed in human embryonic kidney (HEK 293) cells and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) together with immunofluorescent confocal and high resolution microscopy, auto-ubiquitinylation assays, and co-immunoprecipitation experiments to test the functional interactions between hERG and RNF207. RESULTS: Here, we demonstrated that RNF207 serves as an E3 ubiquitin ligase and targets misfolded hERGT613M proteins for degradation. RNF207G603fs exhibits decreased activity and hinders the normal degradation pathway; this increases the levels of hERGT613M subunits and their dominant-negative effect on the wild-type subunits, ultimately resulting in decreased current density. Similar findings are shown for hERGA614V, a known dominant-negative mutant subunit. Finally, the presence of RNF207G603fs with hERGT613M results in significantly prolonged action potential durations and reduced hERG current in human-induced pluripotent stem cell-derived cardiomyocytes. CONCLUSION: Our study establishes RNF207 as an interacting protein serving as a ubiquitin ligase for hERG-encoded K+ channel subunits. Normal function of RNF207 is critical for the quality control of hERG subunits and consequently cardiac repolarization. Moreover, our study provides evidence for protein quality control as a new paradigm in life-threatening cardiac arrhythmias in patients with LQTS.


Subject(s)
ERG1 Potassium Channel/genetics , Long QT Syndrome/genetics , Ubiquitin-Protein Ligases/genetics , HEK293 Cells/metabolism , Humans , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques
8.
STAR Protoc ; 2(4): 100891, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34704077

ABSTRACT

Prestin (Slc26a5) is a motor protein previously considered to be expressed exclusively in outer hair cells (OHCs) of the inner ear. However, we recently identified the functional expression of prestin in the heart. Nonlinear capacitance (NLC) measurement in OHCs is used to evaluate the signature function of prestin, which exhibits membrane potential-dependent conformational changes. Here, we describe detailed recording techniques and quantification methods for NLC to evaluate the prestin function in mouse ventricular myocytes. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021).


Subject(s)
Membrane Potentials/physiology , Myocytes, Cardiac/physiology , Patch-Clamp Techniques/methods , Animals , Cells, Cultured , Electric Capacitance , Mice
9.
Cell Rep ; 35(5): 109097, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33951436

ABSTRACT

Cardiac cells generate and amplify force in the context of cardiac load, yet the membranous sheath enclosing the muscle fibers-the sarcolemma-does not experience displacement. That the sarcolemma sustains beat-to-beat pressure changes without experiencing significant distortion is a muscle-contraction paradox. Here, we report that an elastic element-the motor protein prestin (Slc26a5)-serves to amplify actin-myosin force generation in mouse and human cardiac myocytes, accounting partly for the nonlinear capacitance of cardiomyocytes. The functional significance of prestin is underpinned by significant alterations of cardiac contractility in Prestin-knockout mice. Prestin was previously considered exclusive to the inner ear's outer hair cells; however, our results show that prestin serves a broader cellular motor function.


Subject(s)
Heart/physiology , Molecular Motor Proteins/metabolism , Sulfate Transporters/metabolism , Animals , Humans , Mice
10.
Stem Cells Transl Med ; 9(12): 1570-1584, 2020 12.
Article in English | MEDLINE | ID: mdl-32790136

ABSTRACT

Stem cell replacement offers a great potential for cardiac regenerative therapy. However, one of the critical barriers to stem cell therapy is a significant loss of transplanted stem cells from ischemia and inflammation in the host environment. Here, we tested the hypothesis that inhibition of the soluble epoxide hydrolase (sEH) enzyme using sEH inhibitors (sEHIs) to decrease inflammation and fibrosis in the host myocardium may increase the survival of the transplanted human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in a murine postmyocardial infarction model. A specific sEHI (1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea [TPPU]) and CRISPR/Cas9 gene editing were used to test the hypothesis. TPPU results in a significant increase in the retention of transplanted cells compared with cell treatment alone. The increase in the retention of hiPSC-CMs translates into an improvement in the fractional shortening and a decrease in adverse remodeling. Mechanistically, we demonstrate a significant decrease in oxidative stress and apoptosis not only in transplanted hiPSC-CMs but also in the host environment. CRISPR/Cas9-mediated gene silencing of the sEH enzyme reduces cleaved caspase-3 in hiPSC-CMs challenged with angiotensin II, suggesting that knockdown of the sEH enzyme protects the hiPSC-CMs from undergoing apoptosis. Our findings demonstrate that suppression of inflammation and fibrosis using an sEHI represents a promising adjuvant to cardiac stem cell-based therapy. Very little is known regarding the role of this class of compounds in stem cell-based therapy. There is consequently an enormous opportunity to uncover a potentially powerful class of compounds, which may be used effectively in the clinical setting.


Subject(s)
Epoxide Hydrolases/therapeutic use , Fibrosis/therapy , Inflammation/therapy , Myocytes, Cardiac/transplantation , Stem Cell Transplantation/methods , Animals , Epoxide Hydrolases/pharmacology , Humans , Mice , Mice, Inbred NOD
11.
Sci Adv ; 6(15): eaba1104, 2020 04.
Article in English | MEDLINE | ID: mdl-32285007

ABSTRACT

The mammalian cochlea relies on active electromotility of outer hair cells (OHCs) to resolve sound frequencies. OHCs use ionic channels and somatic electromotility to achieve the process. It is unclear, though, how the kinetics of voltage-gated ionic channels operate to overcome extrinsic viscous drag on OHCs at high frequency. Here, we report ultrafast electromechanical gating of clustered Kv7.4 in OHCs. Increases in kinetics and sensitivity resulting from cooperativity among clustered-Kv7.4 were revealed, using optogenetics strategies. Upon clustering, the half-activation voltage shifted negative, and the speed of activation increased relative to solitary channels. Clustering also rendered Kv7.4 channels mechanically sensitive, confirmed in consolidated Kv7.4 channels at the base of OHCs. Kv7.4 clusters provide OHCs with ultrafast electromechanical channel gating, varying in magnitude and speed along the cochlea axis. Ultrafast Kv7.4 gating provides OHCs with a feedback mechanism that enables the cochlea to overcome viscous drag and resolve sounds at auditory frequencies.


Subject(s)
Electrophysiological Phenomena , Hair Cells, Auditory, Outer/cytology , Hair Cells, Auditory, Outer/physiology , KCNQ Potassium Channels/metabolism , Mechanical Phenomena , Animals , Cell Line , Cochlea/physiology , Humans , Ion Channel Gating , Mice , Temperature
12.
Article in English | MEDLINE | ID: mdl-29025768

ABSTRACT

BACKGROUND: Intracellular pH (pHi) is critical to cardiac excitation and contraction; uncompensated changes in pHi impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pHi regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl-/HCO3- exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pHi, but also cardiac excitability. METHODS AND RESULTS: To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout (Slc26a6-/- ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca2+ transient and sarcoplasmic reticulum Ca2+ load, together with decreased sarcomere shortening in Slc26a6-/- cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pHi is elevated in Slc26a6-/- cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl-/HCO3- exchange activities of Slc26a6. Moreover, Slc26a6-/- mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. CONCLUSIONS: Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl-/HCO3- transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pHi, excitability, and contractility. pHi is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6-/- mice.


Subject(s)
Action Potentials , Antiporters/deficiency , Excitation Contraction Coupling , Heart Rate , Myocardial Contraction , Myocytes, Cardiac/metabolism , Animals , Antiporters/genetics , Bradycardia/genetics , Bradycardia/metabolism , Bradycardia/physiopathology , CHO Cells , Cricetulus , Genotype , Hydrogen-Ion Concentration , Kinetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, 129 Strain , Mice, Knockout , Phenotype , Sarcomeres/metabolism , Sarcoplasmic Reticulum/metabolism , Sulfate Transporters , Transfection
13.
Heart Rhythm ; 14(11): 1685-1692, 2017 11.
Article in English | MEDLINE | ID: mdl-28668623

ABSTRACT

BACKGROUND: The limited regenerative capacity of cardiac tissue has long been an obstacle to treating damaged myocardium. Cell-based therapy offers an enormous potential to the current treatment paradigms. However, the efficacy of regenerative therapies remains limited by inefficient delivery and engraftment. Electrotaxis (electrically guided cell movement) has been clinically used to improve recovery in a number of tissues but has not been investigated for treating myocardial damage. OBJECTIVE: The purpose of this study was to test the electrotactic behaviors of several types of cardiac cells. METHODS: Cardiac progenitor cells (CPCs), cardiac fibroblasts (CFs), and human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) were used. RESULTS: CPCs and CFs electrotax toward the anode of a direct current electric field, whereas hiPSC-CPCs electrotax toward the cathode. The voltage-dependent electrotaxis of CPCs and CFs requires the presence of serum in the media. Addition of soluble vascular cell adhesion molecule to serum-free media restores directed migration. We provide evidence that CPC and CF electrotaxis is mediated through phosphatidylinositide 3-kinase signaling. In addition, very late antigen-4, an integrin and growth factor receptor, is required for electrotaxis and localizes to the anodal edge of CPCs in response to direct current electric field. The hiPSC-derived CPCs do not express very late antigen-4, migrate toward the cathode in a voltage-dependent manner, and, similar to CPCs and CFs, require media serum and phosphatidylinositide 3-kinase activity for electrotaxis. CONCLUSION: The electrotactic behaviors of these therapeutic cardiac cells may be used to improve cell-based therapy for recovering function in damaged myocardium.


Subject(s)
Genetic Therapy/methods , Heart Diseases/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Differentiation , Cell Movement , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Heart Diseases/pathology , Male , Mice , Mice, Knockout , Myocytes, Cardiac/pathology , Signal Transduction
14.
Stem Cell Rev Rep ; 13(5): 631-643, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28623610

ABSTRACT

The inward rectifier potassium current (IK1) is generally thought to suppress cardiac automaticity by hyperpolarizing membrane potential (MP). We recently observed that IK1 could promote the spontaneously-firing automaticity induced by upregulation of pacemaker funny current (If) in adult ventricular cardiomyocytes (CMs). However, the intriguing ability of IK1 to activate If and thereby promote automaticity has not been explored. In this study, we combined mathematical and experimental assays and found that only IK1 and If, at a proper-ratio of densities, were sufficient to generate rhythmic MP-oscillations even in unexcitable cells (i.e. HEK293T cells and undifferentiated mouse embryonic stem cells [ESCs]). We termed this effect IK1-induced If activation. Consistent with previous findings, our electrophysiological recordings observed that around 50% of mouse (m) and human (h) ESC-differentiated CMs could spontaneously fire action potentials (APs). We found that spontaneously-firing ESC-CMs displayed more hyperpolarized maximum diastolic potential and more outward IK1 current than quiescent-yet-excitable m/hESC-CMs. Rather than classical depolarization pacing, quiescent mESC-CMs were able to fire APs spontaneously with an electrode-injected small outward-current that hyperpolarizes MP. The automaticity to spontaneously fire APs was also promoted in quiescent hESC-CMs by an IK1-specific agonist zacopride. In addition, we found that the number of spontaneously-firing m/hESC-CMs was significantly decreased when If was acutely upregulated by Ad-CGI-HCN infection. Our study reveals a novel role of IK1 promoting the development of cardiac automaticity in m/hESC-CMs through a mechanism of IK1-induced If activation and demonstrates a synergistic interaction between IK1 and If that regulates cardiac automaticity.


Subject(s)
Action Potentials/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Myocytes, Cardiac/metabolism , Periodicity , Potassium Channels, Inwardly Rectifying/genetics , Action Potentials/drug effects , Adenoviridae/genetics , Adenoviridae/metabolism , Animals , Benzamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Differentiation/drug effects , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Pacemaker, Artificial , Potassium Channels, Inwardly Rectifying/metabolism , Transgenes
15.
Article in English | MEDLINE | ID: mdl-27162031

ABSTRACT

BACKGROUND: Atrial fibrillation represents the most common arrhythmia leading to increased morbidity and mortality, yet, current treatment strategies have proven inadequate. Conventional treatment with antiarrhythmic drugs carries a high risk for proarrhythmias. The soluble epoxide hydrolase enzyme catalyzes the hydrolysis of anti-inflammatory epoxy fatty acids, including epoxyeicosatrienoic acids from arachidonic acid to the corresponding proinflammatory diols. Therefore, the goal of the study is to directly test the hypotheses that inhibition of the soluble epoxide hydrolase enzyme can result in an increase in the levels of epoxyeicosatrienoic acids, leading to the attenuation of atrial structural and electric remodeling and the prevention of atrial fibrillation. METHODS AND RESULTS: For the first time, we report findings that inhibition of soluble epoxide hydrolase reduces inflammation, oxidative stress, atrial structural, and electric remodeling. Treatment with soluble epoxide hydrolase inhibitor significantly reduces the activation of key inflammatory signaling molecules, including the transcription factor nuclear factor κ-light-chain-enhancer, mitogen-activated protein kinase, and transforming growth factor-ß. CONCLUSIONS: This study provides insights into the underlying molecular mechanisms leading to atrial fibrillation by inflammation and represents a paradigm shift from conventional antiarrhythmic drugs, which block downstream events to a novel upstream therapeutic target by counteracting the inflammatory processes in atrial fibrillation.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Atrial Fibrillation/metabolism , Atrial Remodeling/physiology , Enzyme Inhibitors/therapeutic use , Heart Atria/metabolism , Oxidative Stress/drug effects , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/physiopathology , Atrial Remodeling/drug effects , Disease Models, Animal , Heart Atria/drug effects , Heart Atria/physiopathology , Male , Mice , Mice, Inbred C57BL
16.
Circ Arrhythm Electrophysiol ; 8(4): 942-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25995211

ABSTRACT

BACKGROUND: Loss of transient outward K(+) current (Ito) is well documented in cardiac hypertrophy and failure both in animal models and in humans. Electrical remodeling contributes to prolonged action potential duration and increased incidence of arrhythmias. Furthermore, there is a growing body of evidence linking microRNA (miR) dysregulation to the progression of both conditions. In this study, we examined the mechanistic basis underlying miR dysregulation in electrical remodeling and revealed a novel interaction with the adrenergic signaling pathway. METHODS AND RESULTS: We first used a tissue-specific knockout model of Dicer1 in cardiomyocytes to reveal the overall regulatory effect of miRs on the ionic currents and action potentials. We then validated the inducible cAMP early repressor as a target of miR-1 and took advantage of a clinically relevant model of post myocardial infarction and miR delivery to probe the mechanistic basis of miR dysregulation in electrical remodeling. These experiments revealed the role of inducible cAMP early repressor as a repressor of miR-1 and Ito, leading to prolonged action potential duration post myocardial infarction. In addition, delivery of miR-1 and miR-133a suppressed inducible cAMP early repressor expression and prevented both electrical remodeling and hypertrophy. CONCLUSIONS: Taken together, our results illuminate the mechanistic links between miRs, adrenergic signaling, and electrical remodeling. They also serve as a proof-of-concept for the therapeutic potential of miR delivery post myocardial infarction.


Subject(s)
Atrial Remodeling/genetics , Cardiomegaly/genetics , Cyclic AMP/genetics , DEAD-box RNA Helicases/genetics , Gene Expression Regulation , MicroRNAs/genetics , Myocardium/metabolism , Ribonuclease III/genetics , Animals , Animals, Newborn , Blotting, Western , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Cyclic AMP/metabolism , DEAD-box RNA Helicases/biosynthesis , Disease Models, Animal , Flow Cytometry , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction , Ribonuclease III/biosynthesis , Signal Transduction
17.
J Biol Chem ; 290(8): 4663-4676, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25538241

ABSTRACT

Cav1.3 L-type Ca(2+) channel is known to be highly expressed in neurons and neuroendocrine cells. However, we have previously demonstrated that the Cav1.3 channel is also expressed in atria and pacemaking cells in the heart. The significance of the tissue-specific expression of the channel is underpinned by our previous demonstration of atrial fibrillation in a Cav1.3 null mutant mouse model. Indeed, a recent study has confirmed the critical roles of Cav1.3 in the human heart (Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad, I., Sinnegger-Brauns, M. J., Brandt, N., Engel, J., Mangoni, M. E., Farooq, M., Khan, H. U., Nürnberg, P., Striessnig, J., and Bolz, H. J. (2011) Nat. Neurosci. 14, 77-84). These studies suggest that detailed knowledge of Cav1.3 may have broad therapeutic ramifications in the treatment of cardiac arrhythmias. Here, we tested the hypothesis that there is a functional cross-talk between the Cav1.3 channel and a small conductance Ca(2+)-activated K(+) channel (SK2), which we have documented to be highly expressed in human and mouse atrial myocytes. Specifically, we tested the hypothesis that the C terminus of Cav1.3 may translocate to the nucleus where it functions as a transcriptional factor. Here, we reported for the first time that the C terminus of Cav1.3 translocates to the nucleus where it functions as a transcriptional regulator to modulate the function of Ca(2+)-activated K(+) channels in atrial myocytes. Nuclear translocation of the C-terminal domain of Cav1.3 is directly regulated by intracellular Ca(2+). Utilizing a Cav1.3 null mutant mouse model, we demonstrate that ablation of Cav1.3 results in a decrease in the protein expression of myosin light chain 2, which interacts and increases the membrane localization of SK2 channels.


Subject(s)
Calcium Channels, L-Type/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation/physiology , Myocytes, Cardiac/metabolism , Transcription, Genetic/physiology , Active Transport, Cell Nucleus/physiology , Animals , Calcium Channels, L-Type/genetics , Cardiac Myosins/biosynthesis , Cardiac Myosins/genetics , Cell Nucleus/genetics , Heart Atria/cytology , Heart Atria/metabolism , Humans , Mice , Mice, Knockout , Myocytes, Cardiac/cytology , Myosin Light Chains/biosynthesis , Myosin Light Chains/genetics , Protein Structure, Tertiary
18.
Cardiovasc Res ; 101(2): 317-25, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24282291

ABSTRACT

AIMS: Small conductance Ca(2+)-activated K(+) channels (K(Ca)2 or SK channels) have been reported in excitable cells, where they aid in integrating changes in intracellular Ca(2+) (Ca(i)²âº) with membrane potentials. We have recently reported the functional expression of SK channels in human and mouse cardiac myocytes. Additionally, we have found that the channel is highly expressed in atria compared with the ventricular myocytes. We demonstrated that human cardiac myocytes expressed all three members of SK channels (SK1, 2, and 3); moreover, the different members are capable of forming heteromultimers. Here, we directly tested the contribution of SK3 to the overall repolarization of atrial action potentials. METHODS AND RESULTS: We took advantage of a mouse model with site-specific insertion of a tetracycline-based genetic switch in the 5' untranslated region of the KCNN3 (SK3 channel) gene (SK3(T/T)). The gene-targeted animals overexpress the SK3 channel without interfering with the normal profile of SK3 expression. Whole-cell, patch-clamp techniques show a significant shortening of the action potential duration mainly at 90% repolarization (APD90) in atrial myocytes from the homozygous SK3(T/T) animals. Conversely, treatment with dietary doxycycline results in a significant prolongation of APD90 in atrial myocytes from SK3(T/T) animals. We further demonstrate that the shortening of APDs in SK3 overexpression mice predisposes the animals to inducible atrial arrhythmias. CONCLUSION: SK3 channel contributes importantly towards atrial action potential repolarization. Our data suggest the important role of the SK3 isoform in atrial myocytes.


Subject(s)
Atrial Function , Myocytes, Cardiac/metabolism , Potassium/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Action Potentials , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Electrocardiography , Genetic Predisposition to Disease , Heart Atria/diagnostic imaging , Heart Atria/metabolism , Homozygote , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Patch-Clamp Techniques , Phenotype , Small-Conductance Calcium-Activated Potassium Channels/genetics , Time Factors , Ultrasonography
19.
Circ Res ; 112(12): 1567-76, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23609114

ABSTRACT

RATIONALE: Adenylyl cyclase (AC) represents one of the principal molecules in the ß-adrenergic receptor signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC types 5 (ACV) and 6 (ACVI) are the 2 main isoforms in the heart. Although highly homologous in sequence, these 2 proteins play different roles during the development of heart failure. Caveolin-3 is a scaffolding protein, integrating many intracellular signaling molecules in specialized areas called caveolae. In cardiomyocytes, caveolin is located predominantly along invaginations of the cell membrane known as t-tubules. OBJECTIVE: We take advantage of ACV and ACVI knockout mouse models to test the hypothesis that there is distinct compartmentalization of these isoforms in ventricular myocytes. METHODS AND RESULTS: We demonstrate that ACV and ACVI isoforms exhibit distinct subcellular localization. The ACVI isoform is localized in the plasma membrane outside the t-tubular region and is responsible for ß1-adrenergic receptor signaling-mediated enhancement of the L-type Ca(2+) current (ICa,L) in ventricular myocytes. In contrast, the ACV isoform is localized mainly in the t-tubular region where its influence on ICa,L is restricted by phosphodiesterase. We further demonstrate that the interaction between caveolin-3 with ACV and phosphodiesterase is responsible for the compartmentalization of ACV signaling. CONCLUSIONS: Our results provide new insights into the compartmentalization of the 2 AC isoforms in the regulation of ICa,L in ventricular myocytes. Because caveolae are found in most mammalian cells, the mechanism of ß- adrenergic receptor and AC compartmentalization may also be important for ß-adrenergic receptor signaling in other cell types.


Subject(s)
Adenylyl Cyclases/metabolism , Calcium Channels, L-Type/metabolism , Heart Ventricles/enzymology , Myocytes, Cardiac/enzymology , Adenylyl Cyclases/deficiency , Adenylyl Cyclases/genetics , Adrenergic beta-Agonists/pharmacology , Amino Acid Sequence , Animals , Calcium Channels, L-Type/drug effects , Caveolin 3/metabolism , Cell Membrane/enzymology , Computer Simulation , Fluorescent Antibody Technique , Heart Ventricles/drug effects , Isoenzymes , Isoproterenol/pharmacology , Membrane Potentials , Mice , Mice, Knockout , Microscopy, Confocal , Molecular Sequence Data , Myocytes, Cardiac/drug effects , Phosphoric Diester Hydrolases/metabolism , Receptors, Adrenergic, beta-1/metabolism , Signal Transduction
20.
Proc Natl Acad Sci U S A ; 109(35): 14158-63, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22891308

ABSTRACT

Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation-contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 µM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrically evoked ECC within ∼10-20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca(2+) transients followed by complete failure of ECC, independent of Ca(2+) store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca(2+) entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca(2+) currents of cardiac and skeletal muscle, and [(3)H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [(3)H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca(2+) and RyR channels in skeletal muscle, and L-type Ca(2+) entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.


Subject(s)
Anti-Infective Agents, Local/toxicity , Calcium/metabolism , Heart Failure/chemically induced , Muscle Contraction/drug effects , Myocardial Contraction/drug effects , Triclosan/toxicity , Age Factors , Animals , Animals, Newborn , Calcium Channels, L-Type/metabolism , Cyprinidae , Heart Failure/physiopathology , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Motor Activity/drug effects , Motor Activity/physiology , Muscle Contraction/physiology , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Myocardial Contraction/physiology , Myocardium/cytology , Ryanodine Receptor Calcium Release Channel/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Water Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...