Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clim Dyn ; 56(11-12): 3817-3833, 2021.
Article in English | MEDLINE | ID: mdl-34776646

ABSTRACT

Holocene climate variability is punctuated by episodic climatic events such as the Little Ice Age (LIA) predating the industrial-era warming. Their dating and forcing mechanisms have however remained controversial. Even more crucially, it is uncertain whether earlier events represent climatic regimes similar to the LIA. Here we produce and analyse a new 7500-year long palaeoclimate record tailored to detect LIA-like climatic regimes from northern European tree-ring data. In addition to the actual LIA, we identify LIA-like ca. 100-800 year periods with cold temperatures combined with clear sky conditions from 540 CE, 1670 BCE, 3240 BCE and 5450 BCE onwards, these LIA-like regimes covering 20% of the study period. Consistent with climate modelling, the LIA-like regimes originate from a coupled atmosphere-ocean-sea ice North Atlantic-Arctic system and were amplified by volcanic activity (multiple eruptions closely spaced in time), tree-ring evidence pointing to similarly enhanced LIA-like regimes starting after the eruptions recorded in 1627 BCE, 536/540 CE and 1809/1815 CE. Conversely, the ongoing decline in Arctic sea-ice extent is mirrored in our data which shows reversal of the LIA-like conditions since the late nineteenth century, our record also correlating highly with the instrumentally recorded Northern Hemisphere and global temperatures over the same period. Our results bridge the gaps between low- and high-resolution, precisely dated proxies and demonstrate the efficacy of slow and fast components of the climate system to generate LIA-like climate regimes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00382-021-05669-0.

2.
Sci Rep ; 8(1): 1339, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358711

ABSTRACT

The large volcanic eruptions of AD 536 and 540 led to climate cooling and contributed to hardships of Late Antiquity societies throughout Eurasia, and triggered a major environmental event in the historical Roman Empire. Our set of stable carbon isotope records from subfossil tree rings demonstrates a strong negative excursion in AD 536 and 541-544. Modern data from these sites show that carbon isotope variations are driven by solar radiation. A model based on sixth century isotopes reconstruct an irradiance anomaly for AD 536 and 541-544 of nearly three standard deviations below the mean value based on modern data. This anomaly can be explained by a volcanic dust veil reducing solar radiation and thus primary production threatening food security over a multitude of years. We offer a hypothesis that persistently low irradiance contributed to remarkably simultaneous outbreaks of famine and Justinianic plague in the eastern Roman Empire with adverse effects on crop production and photosynthesis of the vitamin D in human skin and thus, collectively, human health. Our results provide a hitherto unstudied proxy for exploring the mechanisms of 'volcanic summers' to demonstrate the post-eruption deficiencies in sunlight and to explain the human consequences during such calamity years.


Subject(s)
Carbon Isotopes/analysis , Trees/chemistry , Volcanic Eruptions/history , Dust , Environmental Monitoring , Food Supply , Fossils , History, Medieval , Humans
3.
Sci Adv ; 1(10): e1500561, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26601136

ABSTRACT

Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other "Old World" climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the "Old World Drought Atlas" (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability.

4.
PLoS One ; 6(9): e25133, 2011.
Article in English | MEDLINE | ID: mdl-21966436

ABSTRACT

Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483-2006 period correlates at 0.80 with June-August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existing Scandinavian tree-ring proxies. Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500 years.


Subject(s)
Seasons , Temperature , Climate Change , Scandinavian and Nordic Countries
5.
Int J Biometeorol ; 51(1): 61-72, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16786325

ABSTRACT

Plant phenological data and tree-rings were tested for their palaeoclimatic value in south-west Finland since AD 1750. The information from fragmentary, partly overlapping, partly non-systematically biased plant phenological records of 14 different phenomena (a total of 3,144 observations) was combined into one continuous time series of phenological indices. All site- and phenomenon-specific series were standardized to present an average of zero and standard deviation of one. The mean phenomenon-specific series were then averaged as arithmetic means for annually resolved time series representing the variability in the particular plant phenomenon. Consequently, each phenomenon-specific mean series was based on spatially normalized site-specific index series. These series were compared to each other, living-tree and subfossil tree-rings, and to early and modern meteorological time series. Phenological indices showed strong positive correlation with February to June temperatures. On the other hand, the correlations between phenological indices and precipitation data were around zero. Analysis using time-dependent running correlations showed non-stationary relationship between the tree-rings and phenological indices and observed spring temperatures. The skill of phenological data for reconstructing the spring temperatures was statistically proved.


Subject(s)
Climate , Plant Development , Finland , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Meteorological Concepts , Seasons , Temperature , Time Factors , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...