Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nature ; 627(8005): 811-820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262590

ABSTRACT

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Subject(s)
Evolution, Molecular , Hagfishes , Vertebrates , Animals , Hagfishes/anatomy & histology , Hagfishes/cytology , Hagfishes/embryology , Hagfishes/genetics , Lampreys/genetics , Phylogeny , Vertebrates/genetics , Synteny , Polyploidy , Cell Lineage
2.
Article in English | MEDLINE | ID: mdl-37902302

ABSTRACT

During early development, sea lamprey embryos undergo programmatic elimination of DNA from somatic progenitor cells in a process termed programmed genome rearrangement (PGR). Eliminated DNA eventually becomes condensed into micronuclei, which are then physically degraded and permanently lost from the cell. Previous studies indicated that many of the genes eliminated during PGR have mammalian homologs that are bound by polycomb repressive complex (PRC) in embryonic stem cells. To test whether PRC components play a role in the faithful elimination of germline-specific sequences, we used a combination of CRISPR/Cas9 and lightsheet microscopy to investigate the impact of gene knockouts on early development and the progression through stages of DNA elimination. Analysis of knockout embryos for the core PRC2 subunits EZH, SUZ12, and EED show that disruption of all three genes results in an increase in micronucleus number, altered distribution of micronuclei within embryos, and an increase in micronucleus volume in mutant embryos. While the upstream events of DNA elimination are not strongly impacted by loss of PRC2 components, this study suggests that PRC2 plays a role in the later stages of elimination related to micronucleus condensation and degradation. These findings also suggest that other genes/epigenetic pathways may work in parallel during DNA elimination to mediate chromatin structure, accessibility, and the ultimate loss of germline-specific DNA.

3.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131617

ABSTRACT

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.

4.
Cell Rep ; 42(3): 112263, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36930644

ABSTRACT

Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes.


Subject(s)
Petromyzon , Animals , Petromyzon/genetics , Chromosomes/genetics , DNA/genetics , Genome , Vertebrates/genetics , Germ Cells , Evolution, Molecular , Phylogeny
5.
Methods Mol Biol ; 2562: 165-173, 2023.
Article in English | MEDLINE | ID: mdl-36272074

ABSTRACT

Fluorescence in situ hybridization (FISH) is used extensively for visual localization of specific DNA fragments (and RNA fragments) in broad applications on chromosomes or nuclei at any stage of the cell cycle: metaphase, anaphase, or interphase. The cytogenetic slides that serve as a target for the labeled DNA probe might be prepared using any approach suitable for obtaining cells with appropriate morphology for imaging and analysis. In this chapter, we focus on the application of molecular cytogenetic methods such as DNA labeling, slide preparation, and in situ hybridization related to cells from Mexican axolotl.


Subject(s)
Ambystoma mexicanum , Chromosomes , Animals , In Situ Hybridization, Fluorescence/methods , Ambystoma mexicanum/genetics , Interphase/genetics , Chromosomes/genetics , DNA Probes/genetics , DNA/genetics , RNA
6.
Insects ; 12(2)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671870

ABSTRACT

The genome assembly of Anopheles darlingi consists of 2221 scaffolds (N50 = 115,072 bp) and has a size spanning 136.94 Mbp. This assembly represents one of the smallest genomes among Anopheles species. Anopheles darlingi genomic DNA fragments of ~37 Kb were cloned, end-sequenced, and used as probes for fluorescence in situ hybridization (FISH) with salivary gland polytene chromosomes. In total, we mapped nine DNA probes to scaffolds and autosomal arms. Comparative analysis of the An. darlingi scaffolds with homologous sequences of the Anopheles albimanus and Anopheles gambiae genomes identified chromosomal rearrangements among these species. Our results confirmed that physical mapping is a useful tool for anchoring genome assemblies to mosquito chromosomes.

7.
Exp Cell Res ; 401(2): 112523, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33675804

ABSTRACT

The lampbrush chromosomes (LBCs) in oocytes of the Mexican axolotl (Ambystoma mexicanum) were identified some time ago by their relative lengths and predicted centromeres, but they have never been associated completely with the mitotic karyotype, linkage maps or genome assembly. We identified 9 of the axolotl LBCs using RNAseq to identify actively transcribed genes and 13 BAC (bacterial artificial clone) probes containing pieces of active genes. Using read coverage analysis to find candidate centromere sequences, we developed a centromere probe that localizes to all 14 centromeres. Measurements of relative LBC arm lengths and polymerase III localization patterns enabled us to identify all LBCs. This study presents a relatively simple and reliable way to identify each axolotl LBC cytologically and to anchor chromosome-length sequences (from the axolotl genome assembly) to the physical LBCs by immunostaining and fluorescence in situ hybridization. Our data will facilitate a more detailed transcription analysis of individual LBC loops.


Subject(s)
Ambystoma mexicanum/genetics , Centromere/ultrastructure , Chromosomes/genetics , In Situ Hybridization, Fluorescence , Transcription, Genetic , Ambystoma mexicanum/immunology , Animals , Centromere/genetics , Chromosome Mapping , Chromosomes/immunology , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/immunology , Oocytes/growth & development , Oocytes/ultrastructure
8.
Annu Rev Anim Biosci ; 9: 173-201, 2021 02 16.
Article in English | MEDLINE | ID: mdl-32986476

ABSTRACT

Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.


Subject(s)
DNA/genetics , Genome/genetics , Vertebrates/genetics , Animals , Cell Nucleus , Evolution, Molecular , Genomic Instability , Vertebrates/growth & development
9.
Genes (Basel) ; 11(3)2020 03 19.
Article in English | MEDLINE | ID: mdl-32204543

ABSTRACT

Heterochromatin is identified as a potential factor driving diversification of species. To understand the magnitude of heterochromatin variation within the Anopheles gambiae complex of malaria mosquitoes, we analyzed metaphase chromosomes in An. arabiensis, An. coluzzii, An. gambiae, An. merus, and An. quadriannulatus. Using fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA), a highly repetitive fraction of DNA, and heterochromatic Bacterial Artificial Chromosome (BAC) clones, we established the correspondence of pericentric heterochromatin between the metaphase and polytene X chromosomes of An. gambiae. We then developed chromosome idiograms and demonstrated that the X chromosomes exhibit qualitative differences in their pattern of heterochromatic bands and position of satellite DNA (satDNA) repeats among the sibling species with postzygotic isolation, An. arabiensis, An. merus, An. quadriannulatus, and An. coluzzii or An. gambiae. The identified differences in the size and structure of the X chromosome heterochromatin point to a possible role of repetitive DNA in speciation of mosquitoes. We found that An. coluzzii and An. gambiae, incipient species with prezygotic isolation, share variations in the relative positions of the satDNA repeats and the proximal heterochromatin band on the X chromosomes. This previously unknown genetic polymorphism in malaria mosquitoes may be caused by a differential amplification of DNA repeats or an inversion in the sex chromosome heterochromatin.


Subject(s)
Anopheles/genetics , Genomic Structural Variation , Heterochromatin/genetics , Polytene Chromosomes/genetics , X Chromosome/genetics , Animals , DNA, Satellite/genetics
10.
Genes (Basel) ; 10(10)2019 10 22.
Article in English | MEDLINE | ID: mdl-31652530

ABSTRACT

The sea lamprey (Petromyzon marinus) is one of few vertebrate species known to reproducibly eliminate large fractions of its genome during normal embryonic development. This germline-specific DNA is lost in the form of large fragments, including entire chromosomes, and available evidence suggests that DNA elimination acts as a permanent silencing mechanism that prevents the somatic expression of a specific subset of "germline" genes. However, reconstruction of eliminated regions has proven to be challenging due to the complexity of the lamprey karyotype. We applied an integrative approach aimed at further characterization of the large-scale structure of eliminated segments, including: (1) in silico identification of germline-enriched repeats; (2) mapping the chromosomal location of specific repetitive sequences in germline metaphases; and (3) 3D DNA/DNA-hybridization to embryonic lagging anaphases, which permitted us to both verify the specificity of elements to physically eliminated chromosomes and characterize the subcellular organization of these elements during elimination. This approach resulted in the discovery of several repetitive elements that are found exclusively on the eliminated chromosomes, which subsequently permitted the identification of 12 individual chromosomes that are programmatically eliminated during early embryogenesis. The fidelity and specificity of these highly abundant sequences, their distinctive patterning in eliminated chromosomes, and subcellular localization in elimination anaphases suggest that these sequences might contribute to the specific targeting of chromosomes for elimination or possibly in molecular interactions that mediate their decelerated poleward movement in chromosome elimination anaphases, isolation into micronuclei and eventual degradation.


Subject(s)
Gene Expression Regulation, Developmental , Lampreys/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Chromatin Assembly and Disassembly , Chromosomes/genetics , Germ Cells/metabolism , Lampreys/embryology
11.
Genome Res ; 29(2): 317-324, 2019 02.
Article in English | MEDLINE | ID: mdl-30679309

ABSTRACT

The axolotl (Ambystoma mexicanum) provides critical models for studying regeneration, evolution, and development. However, its large genome (∼32 Gb) presents a formidable barrier to genetic analyses. Recent efforts have yielded genome assemblies consisting of thousands of unordered scaffolds that resolve gene structures, but do not yet permit large-scale analyses of genome structure and function. We adapted an established mapping approach to leverage dense SNP typing information and for the first time assemble the axolotl genome into 14 chromosomes. Moreover, we used fluorescence in situ hybridization to verify the structure of these 14 scaffolds and assign each to its corresponding physical chromosome. This new assembly covers 27.3 Gb and encompasses 94% of annotated gene models on chromosomal scaffolds. We show the assembly's utility by resolving genome-wide orthologies between the axolotl and other vertebrates, identifying the footprints of historical introgression events that occurred during the development of axolotl genetic stocks, and precisely mapping several phenotypes including a large deletion underlying the cardiac mutant. This chromosome-scale assembly will greatly facilitate studies of the axolotl in biological research.


Subject(s)
Ambystoma mexicanum/genetics , Chromosomes , Genome , Animals , Evolution, Molecular , Genetic Linkage , Mutation , Polymorphism, Single Nucleotide , Synteny
12.
Methods Mol Biol ; 1858: 177-194, 2019.
Article in English | MEDLINE | ID: mdl-30414118

ABSTRACT

The development of genomic resources and tools is an important step in designing novel approaches to genetic control of mosquitoes. Physical genome maps enhance the quality of the genome assemblies, improve gene annotation, and provide a better framework for comparative and population genomics studies in mosquitoes. In this chapter, we describe protocols for an important procedure in physical genome mapping-fluorescence in situ hybridization (FISH). We provide details on (1) dissection of salivary glands, ovaries, and imaginal discs for obtaining high-quality polytene or mitotic chromosome preparations; (2) DNA-labeling procedures and extraction of repetitive DNA fractions; and (3) approaches to FISH on polytene and mitotic chromosomes.


Subject(s)
Anopheles/genetics , Chromosomes, Insect , Genome, Insect , In Situ Hybridization, Fluorescence/methods , Physical Chromosome Mapping/methods , Polytene Chromosomes , Animals
13.
Sci Rep ; 8(1): 17882, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552368

ABSTRACT

In the Mexican axolotl (Ambystoma mexicanum), sex is determined by a single Mendelian factor, yet its sex chromosomes do not exhibit morphological differentiation typical of many vertebrate taxa that possess a single sex-determining locus. As sex chromosomes are theorized to differentiate rapidly, species with undifferentiated sex chromosomes provide the opportunity to reconstruct early events in sex chromosome evolution. Whole genome sequencing of 48 salamanders, targeted chromosome sequencing and in situ hybridization were used to identify the homomorphic sex chromosome that carries an A. mexicanum sex-determining factor and sequences that are present only on the W chromosome. Altogether, these sequences cover ~300 kb of validated female-specific (W chromosome) sequence, representing ~1/100,000th of the 32 Gb genome. Notably, a recent duplication of ATRX, a gene associated with mammalian sex-determining pathways, is one of few functional (non-repetitive) genes identified among these W-specific sequences. This duplicated gene (ATRW) was used to develop highly predictive markers for diagnosing sex and represents a strong candidate for a recently-acquired sex determining locus (or sexually antagonistic gene) in A. mexicanum.


Subject(s)
Ambystoma mexicanum/genetics , Sex Chromosomes , Animals , In Situ Hybridization , Whole Genome Sequencing
14.
Nat Genet ; 50(11): 1617, 2018 11.
Article in English | MEDLINE | ID: mdl-30224652

ABSTRACT

When published, this article did not initially appear open access. This error has been corrected, and the open access status of the paper is noted in all versions of the paper. Additionally, affiliation 16 denoting equal contribution was missing from author Robb Krumlauf in the PDF originally published. This error has also been corrected.

16.
Nat Genet ; 50(2): 270-277, 2018 02.
Article in English | MEDLINE | ID: mdl-29358652

ABSTRACT

The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys' unique biology and evolutionary/comparative perspective.


Subject(s)
Cellular Reprogramming/genetics , Evolution, Molecular , Genome , Germ Cells/metabolism , Mutagenesis/physiology , Petromyzon/genetics , Vertebrates/genetics , Animals , Chromatin Assembly and Disassembly/genetics , Vertebrates/classification
17.
Dev Biol ; 429(1): 31-34, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28669817

ABSTRACT

In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and a second lamprey species (Entosphenus tridentatus). These comparative analyses reveal conserved subcellular structures (lagging chromatin and micronuclei) associated with PGR and provide the first comparative embryological evidence in support of the idea that PGR represents an ancient and evolutionarily stable strategy for regulating inherent developmental/genetic conflicts between germline and soma.


Subject(s)
Gene Rearrangement/genetics , Genome , Lampreys/genetics , Phylogeny , Animals , DNA/metabolism , Germ Cells/metabolism
18.
Sci Rep ; 7(1): 6, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28127056

ABSTRACT

The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.


Subject(s)
Ambystoma mexicanum/genetics , Biological Variation, Population , Genotype , Pigments, Biological/genetics , Animals , Biological Evolution , DNA/genetics
19.
PLoS Genet ; 12(6): e1006103, 2016 06.
Article in English | MEDLINE | ID: mdl-27341395

ABSTRACT

The sea lamprey (Petromyzon marinus) represents one of the few vertebrate species known to undergo large-scale programmatic elimination of genomic DNA over the course of its normal development. Programmed genome rearrangements (PGRs) result in the reproducible loss of ~20% of the genome from somatic cell lineages during early embryogenesis. Studies of PGR hold the potential to provide novel insights related to the maintenance of genome stability during the cell cycle and coordination between mechanisms responsible for the accurate distribution of chromosomes into daughter cells, yet little is known regarding the mechanistic basis or cellular context of PGR in this or any other vertebrate lineage. Here we identify epigenetic silencing events that are associated with the programmed elimination of DNA and describe the spatiotemporal dynamics of PGR during lamprey embryogenesis. In situ analyses reveal that the earliest DNA methylation (and to some extent H3K9 trimethylation) events are limited to specific extranuclear structures (micronuclei) containing eliminated DNA. During early embryogenesis a majority of micronuclei (~60%) show strong enrichment for repressive chromatin modifications (H3K9me3 and 5meC). These analyses also led to the discovery that eliminated DNA is packaged into chromatin that does not migrate with somatically retained chromosomes during anaphase, a condition that is superficially similar to lagging chromosomes observed in some cancer subtypes. Closer examination of "lagging" chromatin revealed distributions of repetitive elements, cytoskeletal contacts and chromatin contacts that provide new insights into the cellular mechanisms underlying the programmed loss of these segments. Our analyses provide additional perspective on the cellular and molecular context of PGR, identify new structures associated with elimination of DNA and reveal that PGR is completed over the course of several successive cell divisions.


Subject(s)
Gene Rearrangement/genetics , Genome/genetics , Petromyzon/genetics , Vertebrates/genetics , Animals , Cell Division/genetics , Chromatin/genetics , Chromosomes/genetics , DNA/genetics , DNA Methylation/genetics , Embryonic Development/genetics , Epigenesis, Genetic/genetics , Evolution, Molecular , Genomic Instability/genetics
20.
Proc Natl Acad Sci U S A ; 113(15): E2114-23, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27035980

ABSTRACT

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


Subject(s)
Anopheles/genetics , Chromosomes, Insect/genetics , Insect Vectors/genetics , Y Chromosome/genetics , Animals , Female , Malaria , Male , Phylogeny , Sequence Analysis, DNA , X Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...