Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Immunol ; 115(2): 356-61, 1999 Feb.
Article in English | MEDLINE | ID: mdl-9933465

ABSTRACT

Mutations of the common gamma (gammac) chain result in X-linked SCID (X-SCID), which is characterized by the reduction in number or absence of peripheral blood T cells and natural killer (NK) cells, with retention of normal numbers of B cells. In the present study we describe a novel mutant gammac chain of an X-SCID patient with a typical X-SCID phenotype. This mutant receptor subunit is able to associate with Jak3 to transduce a weak signal. The Jak3-specific action is demonstrated by the induction of gene expression through the haematopoietin receptor response element (HRRE) by IL-2 and IL-4 in the experimental model of transiently transfected hepatoma cells over-expressing Jak3. This result suggests that a threshold in the gammac-Jak3 interaction determines the X-SCID phenotype.


Subject(s)
Genetic Linkage , Mutation , Receptors, Interleukin/genetics , Severe Combined Immunodeficiency/genetics , X Chromosome , Humans , Infant , Janus Kinase 3 , Male , Phenotype , Protein-Tyrosine Kinases/metabolism , Receptors, Colony-Stimulating Factor/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/metabolism , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/metabolism , Response Elements , Signal Transduction
2.
EMBO J ; 16(17): 5386-97, 1997 Sep 01.
Article in English | MEDLINE | ID: mdl-9311998

ABSTRACT

TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis , Membrane Glycoproteins/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Sequence , Apoptosis Regulatory Proteins , B-Lymphocytes/metabolism , Base Sequence , Carrier Proteins/metabolism , Chromosome Mapping , Chromosomes, Human, Pair 8 , Cloning, Molecular , Cysteine Endopeptidases/metabolism , Fas-Associated Death Domain Protein , Humans , Molecular Sequence Data , RNA, Messenger/analysis , Receptors, TNF-Related Apoptosis-Inducing Ligand , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/isolation & purification , Sequence Analysis , Sequence Homology, Amino Acid , Serine Proteinase Inhibitors/pharmacology , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...