Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 15(8): e1008086, 2019 08.
Article in English | MEDLINE | ID: mdl-31412020

ABSTRACT

DNA methyltransferases are ubiquitous enzymes conserved in bacteria, plants and opisthokonta. These enzymes, which methylate cytosines, are involved in numerous biological processes, notably development. In mammals and higher plants, methylation patterns established and maintained by the cytosine DNA methyltransferases (DMTs) are essential to zygotic development. In fungi, some members of an extensively conserved fungal-specific DNA methyltransferase class are both mediators of the Repeat Induced Point mutation (RIP) genome defense system and key players of sexual reproduction. Yet, no DNA methyltransferase activity of these purified RID (RIP deficient) proteins could be detected in vitro. These observations led us to explore how RID-like DNA methyltransferase encoding genes would play a role during sexual development of fungi showing very little genomic DNA methylation, if any. To do so, we used the model ascomycete fungus Podospora anserina. We identified the PaRid gene, encoding a RID-like DNA methyltransferase and constructed knocked-out ΔPaRid defective mutants. Crosses involving P. anserina ΔPaRid mutants are sterile. Our results show that, although gametes are readily formed and fertilization occurs in a ΔPaRid background, sexual development is blocked just before the individualization of the dikaryotic cells leading to meiocytes. Complementation of ΔPaRid mutants with ectopic alleles of PaRid, including GFP-tagged, point-mutated and chimeric alleles, demonstrated that the catalytic motif of the putative PaRid methyltransferase is essential to ensure proper sexual development and that the expression of PaRid is spatially and temporally restricted. A transcriptomic analysis performed on mutant crosses revealed an overlap of the PaRid-controlled genetic network with the well-known mating-types gene developmental pathway common to an important group of fungi, the Pezizomycotina.


Subject(s)
Bacterial Proteins/physiology , DNA Modification Methylases/physiology , Gene Regulatory Networks/genetics , Podospora/physiology , Cytosine/metabolism , DNA Methylation/physiology , Epigenesis, Genetic/physiology , Gene Expression Profiling , Gene Knockdown Techniques , Genes, Mating Type, Fungal/genetics , Genome, Bacterial
2.
Genome Biol Evol ; 10(10): 2736-2748, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30239727

ABSTRACT

Metchnikovellids are highly specialized hyperparasites, which infect and reproduce inside gregarines (Apicomplexa) inhabiting marine invertebrates. Their phylogenetic affiliation was under constant discussion until recently, when analysis of the first near-complete metchnikovellid genome, that of Amphiamblys sp., placed it in a basal position with respect to most Microsporidia. Microsporidia are a highly diversified lineage of extremely reduced parasites related to Rozellida (Rozellosporidia = Rozellomycota = Cryptomycota) within the Holomycota clade of Opisthokonta. By sequencing DNA from a single-isolated infected gregarine cell we obtained an almost complete genome of a second metchnikovellid species, and the first one of a taxonomically described and well-documented species, Metchnikovella incurvata. Our phylogenomic analyses show that, despite being considerably divergent from each other, M. incurvata forms a monophyletic group with Amphiamplys sp., and confirm that metchnikovellids are one of the deep branches of Microsporidia. Comparative genomic analysis demonstrates that, like most Microsporidia, metchnikovellids lack mitochondrial genes involved in energy transduction and are thus incapable of synthesizing their own ATP via mitochondrial oxidative phosphorylation. They also lack the horizontally acquired ATP transporters widespread in most Microsporidia. We hypothesize that a family of mitochondrial carrier proteins evolved to transport ATP from the host into the metchnikovellid cell. We observe the progressive reduction of genes involved in DNA repair pathways along the evolutionary path of Microsporidia, which might explain, at least partly, the extremely high evolutionary rate of the most derived species. Our data also suggest that genome reduction and acquisition of novel genes co-occurred during the adaptation of Microsporidia to their hosts.


Subject(s)
Biological Evolution , Genome, Fungal , Microsporidia/genetics , Animals , Apicomplexa/microbiology , Polychaeta/parasitology
3.
J Eukaryot Microbiol ; 64(2): 204-212, 2017 03.
Article in English | MEDLINE | ID: mdl-27487286

ABSTRACT

Aphelids are a poorly known group of parasitoids of algae that have raised considerable interest due to their pivotal phylogenetic position. Together with Cryptomycota and the highly derived Microsporidia, they have been recently re-classified as the Opisthosporidia, which constitute the sister group to the fungi within the Holomycota. Despite their huge diversity, as revealed by molecular environmental studies, and their phylogenetic interest, only three genera have been described (Aphelidium, Amoeboaphelidium, and Pseudaphelidium), from which 18S rRNA gene sequences exist only for Amoeboaphelidium and Aphelidium species. Here, we describe the life cycle and ultrastructure of a new representative of Aphelida, Paraphelidium tribonemae gen. et sp. nov., and provide the first 18S rRNA gene sequence obtained for this genus. Molecular phylogenetic analysis indicates that Paraphelidium is distantly related to both Aphelidium and Amoebaphelidium, highlighting the wide genetic diversity of aphelids. Paraphelidium tribonemae has amoeboflagellate zoospores containing a lipid-microbody complex, dictyosomes, and mitochondria with rhomboid cristae, which are also present in trophonts and plasmodia. The amoeboid trophont uses pseudopodia to feed from the host cytoplasm. Although genetically distinct, the genus Paraphelidium is morphologically indistinguishable from other aphelid genera and has zoospores able to produce lamellipodia with subfilopodia like those of Amoeboaphelidium.


Subject(s)
Eukaryota/classification , Eukaryota/genetics , Eukaryota/ultrastructure , Genetic Variation , Phylogeny , Amoeba/genetics , Cysts/ultrastructure , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Ecology , Eukaryota/physiology , Life Cycle Stages , Microscopy, Electron, Transmission , Organelles/ultrastructure , Plasmodium/ultrastructure , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Spores/ultrastructure
4.
Mol Biol Evol ; 33(11): 2890-2898, 2016 11.
Article in English | MEDLINE | ID: mdl-27512113

ABSTRACT

Stramenopiles or heterokonts constitute one of the most speciose and diverse clades of protists. It includes ecologically important algae (such as diatoms or large multicellular brown seaweeds), as well as heterotrophic (e.g., bicosoecids, MAST groups) and parasitic (e.g., Blastocystis, oomycetes) species. Despite their evolutionary and ecological relevance, deep phylogenetic relationships among stramenopile groups, inferred mostly from small-subunit rDNA phylogenies, remain unresolved, especially for the heterotrophic taxa. Taking advantage of recently released stramenopile transcriptome and genome sequences, as well as data from the genomic assembly of the MAST-3 species Incisomonas marina generated in our laboratory, we have carried out the first extensive phylogenomic analysis of stramenopiles, including representatives of most major lineages. Our analyses, based on a large data set of 339 widely distributed proteins, strongly support a root of stramenopiles lying between two clades, Bigyra and Gyrista (Pseudofungi plus Ochrophyta). Additionally, our analyses challenge the Phaeista-Khakista dichotomy of photosynthetic stramenopiles (ochrophytes) as two groups previously considered to be part of the Phaeista (Pelagophyceae and Dictyochophyceae), branch with strong support with the Khakista (Bolidophyceae and Diatomeae). We propose a new classification of ochrophytes within the two groups Chrysista and Diatomista to reflect the new phylogenomic results. Our stramenopile phylogeny provides a robust phylogenetic framework to investigate the evolution and diversification of this group of ecologically relevant protists.


Subject(s)
Biological Evolution , Stramenopiles/genetics , DNA, Ribosomal/genetics , Diatoms/genetics , Evolution, Molecular , Heterotrophic Processes , Phylogeny , Sequence Analysis, DNA/methods
5.
Fungal Genet Biol ; 94: 1-10, 2016 09.
Article in English | MEDLINE | ID: mdl-27353975

ABSTRACT

In filamentous fungi, entrance into stationary phase is complex as it is accompanied by several differentiation and developmental processes, including the synthesis of pigments, aerial hyphae, anastomoses and sporophores. The regulatory networks that control these processes are still incompletely known. The analysis of the "Impaired in the development of Crippled Growth (IDC)" mutants of the model filamentous ascomycete Podospora anserina has already yielded important information regarding the pathway regulating entrance into stationary phase. Here, the genes affected in two additional IDC mutants are identified as orthologues of the Saccharomyces cerevisiae WHI2 and PSR1 genes, known to regulate stationary phase in this yeast, arguing for a conserved role of these proteins throughout the evolution of ascomycetes.


Subject(s)
Gene Expression Regulation, Fungal , Gene Regulatory Networks , Mycelium/genetics , Podospora/genetics , Fungal Proteins/genetics , Genetic Complementation Test , Mutation , Mycelium/growth & development , Phosphorylation , Podospora/growth & development
6.
Plant Physiol ; 165(4): 1521-1532, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24948829

ABSTRACT

Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-ß-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-ß-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane.

7.
Plant Cell ; 23(7): 2592-605, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21742992

ABSTRACT

It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Cellulose/ultrastructure , Hypocotyl/cytology , Hypocotyl/growth & development , Plant Epidermis/cytology , Plant Epidermis/growth & development , Anisotropy , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/chemistry , Cellulose/metabolism , Glucosyltransferases/metabolism , Hypocotyl/metabolism , Microfibrils/chemistry , Microfibrils/metabolism , Microfibrils/ultrastructure , Microtubules/chemistry , Microtubules/metabolism , Microtubules/ultrastructure , Plant Epidermis/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
8.
Plant Physiol ; 151(2): 631-40, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19700559

ABSTRACT

Under sulfur deprivation conditions, the green alga Chlamydomonas reinhardtii produces hydrogen in the light in a sustainable manner thanks to the contribution of two pathways, direct and indirect. In the direct pathway, photosystem II (PSII) supplies electrons to hydrogenase through the photosynthetic electron transport chain, while in the indirect pathway, hydrogen is produced in the absence of PSII through a photosystem I-dependent process. Starch metabolism has been proposed to contribute to both pathways by feeding respiration and maintaining anoxia during the direct pathway and by supplying reductants to the plastoquinone pool during the indirect pathway. At variance with this scheme, we report that a mutant lacking starch (defective for sta6) produces similar hydrogen amounts as the parental strain in conditions of sulfur deprivation. However, when PSII is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, conditions where hydrogen is produced by the indirect pathway, hydrogen production is strongly reduced in the starch-deficient mutant. We conclude that starch breakdown contributes to the indirect pathway by feeding electrons to the plastoquinone pool but is dispensable for operation of the direct pathway that prevails in the absence of DCMU. While hydrogenase induction was strongly impaired in the starch-deficient mutant under dark anaerobic conditions, wild-type-like induction was observed in the light. Because this light-driven hydrogenase induction is DCMU insensitive and strongly inhibited by carbonyl cyanide-p-trifluoromethoxyphenylhydrazone or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, we conclude that this process is regulated by the proton gradient generated by cyclic electron flow around PSI.


Subject(s)
Chlamydomonas/metabolism , Hydrogen/metabolism , Photosystem II Protein Complex/metabolism , Starch/metabolism , Acetates/metabolism , Anaerobiosis , Animals , Chlamydomonas/cytology , Chlamydomonas/enzymology , Deuterium/metabolism , Genetic Complementation Test , Hydrogenase/metabolism , Intracellular Space/metabolism , Mutation/genetics , Sulfur/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...