Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 6(10): 1432-44, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11073219

ABSTRACT

Ribosome recycling factor (RRF), in concert with elongation factor EF-G, is required for disassembly of the posttermination complex of the ribosome after release of polypeptides. The crystal structure of Thermus thermophilus RRF was determined at 2.6 A resolution. It is a tRNA-like L-shaped molecule consisting of two domains: a long three-helix bundle (domain 1) and a three-layer beta/alpha/beta sandwich (domain 2). Although the individual domain structures are similar to those of Thermotoga maritima RRF (Selmer et al., Science, 1999, 286:2349-2352), the interdomain angle differs by 33 degrees in two molecules, suggesting that the hinge between two domains is potentially flexible and responsive to different conditions of crystal packing. The hinge connects hydrophobic junctions of domains 1 and 2. The structure-based genetic analysis revealed the strong correlation between the hinge flexibility and the in vivo function of RRF. First, altering the hinge flexibility by making alanine or serine substitutions for large-size residues conserved at the hinge loop and nearby in domain 1 frequently gave rise to gain of function except a Pro residue conserved at the hinge loop. Second, the hinge defect resulting from a too relaxed hinge structure can be compensated for by secondary alterations in domain 1 that seem to increase the hydrophobic contact between domain 1 and the hinge loop. These results show that the hinge flexibility is vital for the function of RRF and that the steric interaction between the hinge loop and domains 1 and 2 restricts the interdomain angle and/or the hinge flexibility. These results indicate that RRF possesses an architectural difference from tRNA regardless of a resemblance to tRNA shape: RRF has a "gooseneck" elbow, whereas the tRNA elbow is rigid, and the direction of flex of RRF and tRNA is at a nearly right angle to each other. Moreover, surface electrostatic potentials of the two RRF proteins are dissimilar and do not mimic the surface potential of tRNA or EF-G. These properties will add a new insight into RRF, suggesting that RRF is more than a simple tRNA mimic.


Subject(s)
Mutation/genetics , Proteins/chemistry , Proteins/metabolism , Thermus thermophilus/chemistry , Alleles , Amino Acid Sequence , Crystallography, X-Ray , Escherichia coli/genetics , Genetic Complementation Test , Models, Molecular , Molecular Mimicry , Molecular Sequence Data , Molecular Weight , Pliability , Protein Structure, Secondary , Protein Structure, Tertiary , Proteins/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomal Proteins , Sequence Alignment , Static Electricity , Structure-Activity Relationship , Suppression, Genetic/genetics , Thermus/chemistry , Thermus thermophilus/genetics
2.
Biochimie ; 82(8): 765-72, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11018294

ABSTRACT

Polypeptide release factor one from Thermus thermophilus, ttRF1, was purified and subjected to crystallization. Thin crystalline needles were obtained but their quality was not satisfactory for X-ray diffraction. Stable fragments of ttRF1 suitable for crystallization were screened by limited proteolysis. Three major fragments were produced by thermolysinolysis and analyzed by N-terminal sequencing and electrospray mass spectrometry. They were N-terminal fragments generated by proteolysis at amino acid positions 211, 231 and 292. The corresponding recombinant polypeptides, ttRF1(211), ttRF1(231) and ttRF1(292), were overproduced and subjected to crystallization. Of these polypeptides, ttRF1(292) gave rise to crystals that belong to P3(1) (or P3(2)) space group with unit cell parameters a = b = 64. 5 A, c = 86.6 A and diffract up to 7 A resolution.


Subject(s)
Bacterial Proteins/chemistry , Peptide Fragments/chemistry , Thermus thermophilus/metabolism , Trans-Activators/chemistry , Amino Acid Sequence , Cloning, Molecular , Crystallization , Escherichia coli , Mass Spectrometry , Molecular Sequence Data , Peptide Fragments/isolation & purification , Peptide Termination Factors/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Sequence Homology, Amino Acid , Thermolysin , Thermus thermophilus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...