Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 12(8): 1132-1137, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37498640

ABSTRACT

An aqueous two-phase system (ATPS) encapsulated within a vesicle organizes the vesicle core as two coexisting phases that partition encapsulated solutes. Here, we use microfluidic technologies to produce vesicles that efficiently encapsulate mixtures of macromolecules, providing a versatile platform to determine the phase behavior of ATPSs. Moreover, we use compartmentalized vesicles to investigate how membrane permeability affects the dynamics of the encapsulated ATPS. Designing a membrane selectively permeable to one of the components of the ATPS, we show that out-of-equilibrium phase separations formed by a rapid outflow of water can be spontaneously reversed by a slower outflow of the permeating component across the vesicle membrane. This dynamics may be exploited advantageously by cells to separate and connect metabolic and signaling routes within their nucleoplasm or cytoplasm depending on external conditions.

2.
Proc Natl Acad Sci U S A ; 117(31): 18470-18476, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690682

ABSTRACT

Lipid membrane fusion is an essential process for a number of critical biological functions. The overall process is thermodynamically favorable but faces multiple kinetic barriers along the way. Inspired by nature's engineered proteins such as SNAP receptor [soluble N-ethylmale-imide-sensitive factor-attachment protein receptor (SNARE)] complexes or viral fusogenic proteins that actively promote the development of membrane proximity, nucleation of a stalk, and triggered expansion of the fusion pore, here we introduce a synthetic fusogen that can modulate membrane fusion and equivalently prime lipid membranes for calcium-triggered fusion. Our fusogen consists of a gold nanoparticle functionalized with an amphiphilic monolayer of alkanethiol ligands that had previously been shown to fuse with lipid bilayers. While previous efforts to develop synthetic fusogens have only replicated the initial steps of the fusion cascade, we use molecular simulations and complementary experimental techniques to demonstrate that these nanoparticles can induce the formation of a lipid stalk and also drive its expansion into a fusion pore upon the addition of excess calcium. These results have important implications in general understanding of stimuli-triggered fusion and the development of synthetic fusogens for biomedical applications.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Gold/chemistry , Lipid Bilayers/metabolism , Metal Nanoparticles/chemistry , Calcium/chemistry , Cell Membrane/chemistry , Gold/metabolism , Humans , Lipid Bilayers/chemistry , Membrane Fusion , Molecular Dynamics Simulation , SNARE Proteins/metabolism , Tissue Array Analysis
3.
Soft Matter ; 15(6): 1388-1395, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30627710

ABSTRACT

Hybrid lipid/nanoparticle membranes are suitable model systems both to study the complex interactions between nanoparticles and biological membranes, and to demonstrate technological concepts in cellular sensing and drug delivery. Unfortunately, embedding nanoparticles into the bilayer membrane of lipid vesicles is challenging due to the poor control over the vesicle fabrication process of conventional methodologies and the fragility of the modified lipid bilayer assembly. Here, the utility of water-in-oil-in-water double emulsion drops with ultrathin oil shells as templates to form vesicles with hybrid lipid/nanoparticle membranes is reported. Moreover, upon bilayer formation, which occurs through dewetting of the oil solvent from the double emulsion drops, a phase separation is observed in the vesicle membrane, with solid-like nanoparticle-rich microdomains segregated into a continuous fluid-like nanoparticle-poor phase. This phase coexistence evidences the complex nature of the interactions between nanoparticles and lipid membranes. In this context, this microfluidic-assisted fabrication strategy may play a crucial role in thoroughly understanding such interactions given the uniform membrane properties of the resulting productions. Furthermore, the high encapsulation efficiency of both the vesicle membrane and core endows these vesicles with great potential for sensing applications and drug delivery.

SELECTION OF CITATIONS
SEARCH DETAIL
...