Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics Chromatin ; 14(1): 1, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407878

ABSTRACT

BACKGROUND: DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. METHODS: In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. RESULTS: We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. CONCLUSIONS: The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


Subject(s)
Circadian Rhythm , DNA Methylation , Animals , Circadian Rhythm/genetics , Mice , Mutation , Phenotype , Transcription Factors/genetics
2.
Chembiochem ; 19(5): 425-429, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29226533

ABSTRACT

Mutations in PINK1, which impair its catalytic kinase activity, are causal for autosomal recessive early-onset Parkinson's disease (PD). Various studies have indicated that the activation of PINK1 could be a useful strategy in treating neurodegenerative diseases, such as PD. Herein, it is shown that the anthelmintic drug niclosamide and its analogues are capable of activating PINK1 in cells through the reversible impairment of the mitochondrial membrane potential. With these compounds, for the first time, it is demonstrated that the PINK1 pathway is active and detectable in primary neurons. These findings suggest that niclosamide and its analogues are robust compounds for the study of the PINK1 pathway and may hold promise as a therapeutic strategy in PD and related disorders.


Subject(s)
Anthelmintics/chemistry , Anthelmintics/pharmacology , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Niclosamide/analogs & derivatives , Niclosamide/pharmacology , Protein Kinases/metabolism , Drug Discovery , HeLa Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/enzymology
3.
Sci Rep ; 7(1): 17765, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259298

ABSTRACT

Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.


Subject(s)
Adaptation, Physiological/physiology , Behavior, Animal/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Homeostasis/physiology , Sleep/physiology , Adaptation, Physiological/genetics , Animals , Brain/physiology , Circadian Clocks/genetics , Circadian Rhythm/genetics , Female , Homeostasis/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mutation/genetics , Sleep/genetics
4.
Front Neurosci ; 10: 409, 2016.
Article in English | MEDLINE | ID: mdl-27610075

ABSTRACT

[This corrects the article on p. 315 in vol. 10, PMID: 27458335.].

5.
Front Neurosci ; 10: 315, 2016.
Article in English | MEDLINE | ID: mdl-27458335

ABSTRACT

In this paper, we show that neuronal assemblies plated on Micro Electrode Arrays present synchronized, low frequency firing patterns similar to in vivo slow wave oscillations, which are a key parameter of sleep-like state. Although neuronal cultures lack the characteristic high-frequency waves of wakefulness, it is possible to modulate their spontaneous firing pattern through the administration of specific neurotransmitters such as acetylcholine. We thus stimulated the cortical cultures with an agonist of acetylcholine receptor, Carbachol, which caused a desynchronization of the spontaneous firing of the cultures. We recorded and monitored the cultures for a period of over 31 h. We analyzed the electrophysiological signals by exploiting novel methodological approaches, taking into account the different temporal scales of the recorded signals, and considering both spikes and local field potentials. Supporting the electrophysiological analysis results, gene expressions of targeted genes showed the activation of specific markers involved in sleep-wake rhythms. Our results demonstrate that the Carbachol treatment induces desynchronization of neuronal activity, altering sleep-like properties in an in vitro model.

6.
Sleep ; 39(3): 637-44, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26446116

ABSTRACT

STUDY OBJECTIVES: Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. METHODS: We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. RESULTS: By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. CONCLUSIONS: Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience.


Subject(s)
Brain/physiopathology , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/physiopathology , RNA, Small Nucleolar/genetics , Sequence Deletion/genetics , Sleep/genetics , Adult , Animals , Brain/pathology , Case-Control Studies , Circadian Rhythm/genetics , Cohort Studies , Electroencephalography , Female , Genotype , Gray Matter/pathology , Gray Matter/physiopathology , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Male , Mice , Obesity/physiopathology , Paternal Inheritance/genetics , Sleep, REM/genetics , Theta Rhythm
7.
J Clin Invest ; 124(4): 1468-82, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24614104

ABSTRACT

The recent identification of multiple dominant mutations in the gene encoding ß-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of ß-catenin function in cognitive impairment. In humans, ß-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo ß-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with ß-catenin mutations enabled us to investigate the consequences of ß-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of ß-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in ß-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults.


Subject(s)
Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Mutation , beta Catenin/genetics , Adolescent , Adult , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , Brain/pathology , Cadherins/chemistry , Child, Preschool , Craniofacial Abnormalities/pathology , DNA/genetics , Disease Models, Animal , Female , Genes, Dominant , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Mutant Strains , Middle Aged , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Phenotype , Sequence Homology, Amino Acid , Syndrome , Young Adult , beta Catenin/chemistry , beta Catenin/metabolism
8.
Philos Trans R Soc Lond B Biol Sci ; 369(1637): 20120471, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24446504

ABSTRACT

Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects.


Subject(s)
Circadian Rhythm/genetics , Gene Expression Regulation/physiology , Neuronal Plasticity/genetics , Sleep Deprivation/physiopathology , Analysis of Variance , Animals , Circadian Rhythm/physiology , Crosses, Genetic , Inheritance Patterns/genetics , Inheritance Patterns/physiology , Mice , Neuronal Plasticity/physiology , Real-Time Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...