Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34234017

ABSTRACT

Heterogeneous selection is often proposed as a key mechanism maintaining repeatable behavioral variation ("animal personality") in wild populations. Previous studies largely focused on temporal variation in selection within single populations. The relative importance of spatial versus temporal variation remains unexplored, despite these processes having distinct effects on local adaptation. Using data from >3,500 great tits (Parus major) and 35 nest box plots situated within five West-European populations monitored over 4 to 18 y, we show that selection on exploration behavior varies primarily spatially, across populations, and study plots within populations. Exploration was, simultaneously, selectively neutral in the average population and year. These findings imply that spatial variation in selection may represent a primary mechanism maintaining animal personalities, likely promoting the evolution of local adaptation, phenotype-dependent dispersal, and nonrandom settlement. Selection also varied within populations among years, which may counteract local adaptation. Our study underlines the importance of combining multiple spatiotemporal scales in the study of behavioral adaptation.


Subject(s)
Animal Migration/physiology , Exploratory Behavior/physiology , Passeriformes/physiology , Animals , Europe , Nonlinear Dynamics
2.
Ecol Evol ; 8(17): 8865-8879, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30271551

ABSTRACT

The life history trade-off between current and future reproduction is a theoretically well-established concept. However, empirical evidence for the occurrence of a fitness cost of reproduction is mixed. Evidence indicates that parents only pay a cost of reproduction when local competition is high. In line with this, recent experimental work on a small passerine bird, the Great tit (Parus major) showed that reproductive effort negatively affected the competitive ability of parents, estimated through competition for high quality breeding sites in spring. In the current study, we further investigate the negative causal relationship between reproductive effort and future parental competitive ability, with the aim to quantify the consequences for parental fitness, when breeding sites are scarce. To this end, we (a) manipulated the family size of Great tit parents and (b) induced severe competition for nest boxes among the parents just before the following breeding season by means of a large-scale nest box removal experiment. Parents increased their feeding effort in response to our family size manipulation and we successfully induced competition among the parents the following spring. Against our expectation, we found no effect of last season's family size on the ability of parents to secure a scarce nest box for breeding. In previous years, if detected, the survival cost of reproduction was always paid after midwinter. In this year, parents did pay a survival cost of reproduction before midwinter and thus before the onset of the experiment in early spring. Winter food availability during our study year was exceptionally low, and thus, competition in early winter may have been extraordinarily high. We hypothesize that differences in parental competitive ability due to their previous reproductive effort might have played a role, but before the onset of our experiment and resulted in the payment of the survival cost of reproduction.

4.
J Anim Ecol ; 86(5): 998-1009, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28543867

ABSTRACT

Migration is a widespread phenomenon in the animal kingdom. On the basis of the considerable variation that exists between and within species, and even within populations, we may be able to infer the (age- and sex-specific) ecological trade-offs and constraints moulding migration systems from assessments of fitness associated with migration and wintering in different areas. During three consecutive breeding seasons, we compared the reproductive performance (timing of breeding, breeding success, chick body condition and post-fledging survival) of Eurasian spoonbills Platalea leucorodia that breed at a single breeding site in The Netherlands, but migrate different distances (c. 4,500 vs. 2,000 km, either or not crossing the Sahara) to and from wintering areas in southern Europe and West Africa. Using mark-recapture analysis, we further investigated whether survival until adulthood (recruitment probability) of chicks hatched between 2006 and 2010 was related to their hatch date and body condition. Long-distance migrants bred later, particularly the males, and raised chicks of poorer body condition than short-distance migrants. Hatch dates strongly advanced with increasing age in short-distance migrants, but hardly advanced in long-distance migrants, causing the difference in timing of breeding between long- and short-distance migrants to be more pronounced among older birds. Breeding success and chick body condition decreased over the season, and chicks that fledged late in the season or in poor condition were less likely to survive until adulthood. As a result, long-distance migrants-particularly the males and older birds-likely recruit fewer offspring into the breeding population than short-distance migrants. This inference is important for predicting the population-level consequences of changes in winter habitat suitability throughout the wintering range. Assuming that the long-distance migrants-being the birds that occupy the traditional wintering areas-are not the poorer quality birds, and that the observed age-dependent patterns in timing of breeding are driven by within-individual effects and not by selective disappearance, our results suggest that the strategy of long-distance migration, involving the crossing of the Sahara to winter in West Africa, incurred a cost by reducing reproductive output, albeit a cost paid only later in life.


Subject(s)
Animal Migration , Birds , Genetic Fitness , Africa, Northern , Age Factors , Animals , Europe , Female , Male , Netherlands , Seasons
5.
Ecol Evol ; 7(5): 1410-1420, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28261453

ABSTRACT

Reproductive behavior cannot be understood without taking the local level of competition into account. Experimental work in great tits (Parus major) showed that (1) a survival cost of reproduction was paid in environments with high levels of competition during the winter period and (2) experimentally manipulated family size negatively affected the ability of parents to compete for preferred breeding boxes in the next spring. The fact that survival was affected in winter suggests that the competitive ability of parents in winter may also be affected by previous reproductive effort. In this study, we aim to investigate whether (1) such carryover effects of family size on the ability of parents to compete for resources in the winter period occurred and (2) this could explain the occurrence of a survival cost of reproduction under increased competition. During two study years, we manipulated the size of in total 168 great tit broods. Next, in winter, we induced competition among the parents by drastically reducing the availability of roosting boxes in their local environment for one week. Contrary to our expectation, we found no negative effect of family size manipulation on the probability of parents to obtain a roosting box. In line with previous work, we did find that a survival cost of reproduction was paid only in plots in which competition for roosting boxes was shortly increased. Our findings thus add to the scarce experimental evidence that survival cost of reproduction are paid under higher levels of local competition but this could not be linked to a reduced competitive ability of parents in winter.

6.
Ecol Lett ; 19(4): 478-86, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26929092

ABSTRACT

Heritable personality variation is subject to fluctuating selection in many animal taxa; a major unresolved question is why this is the case. A parsimonious explanation must involve a general ecological process: a likely candidate is the omnipresent spatiotemporal variation in conspecific density. We tested whether spatiotemporal variation in density within and among nest box plots of great tits (Parus major) predicted variation in selection acting on exploratory behaviour (n = 48 episodes of selection). We found viability selection favouring faster explorers under lower densities but slower explorers under higher densities. Temporal variation in local density represented the primary factor explaining personality-related variation in viability selection. Importantly, birds did not anticipate changes in selection by means of adaptive density-dependent plasticity. This study thereby provides an unprecedented example of the key importance of the interplay between fluctuating selection and lack of adaptive behavioural plasticity in maintaining animal personality variation in the wild.


Subject(s)
Animals, Wild/physiology , Behavior, Animal/physiology , Passeriformes/physiology , Animals , Animals, Wild/psychology , Personality , Population Density , Selection, Genetic
7.
Ecology ; 94(10): 2358-69, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24358720

ABSTRACT

Density dependence in vital rates is key to population regulation. Rather than being constant, the strength of density dependence may vary throughout the year, but empirical evidence is limited. Based on 22 years of data of color-banded birds from a recovering population of Eurasian Spoonbills Platalea leucorodia leucorodia, we show, for the first time, seasonal variation in density dependence in survival of a long-distance migrating bird. Combining resightings and dead recoveries at breeding, stopover, and nonbreeding areas enabled us to (1) separate true survival from permanent emigration from the breeding area, and (2) estimate survival in three seasons: summer, early winter (including autumn migration), and late winter (including spring migration). Accompanying the rapid population growth, juvenile annual survival initially increased, manifested in early winter, but thereafter, at high population sizes, it strongly decreased through a combination of decreasing survival in all seasons. Annual survival of subadult (second- and third-year) and adult birds decreased more gradually with increasing population size, with density dependence occurring in early winter for subadults and late winter for adults. Thus, the shape and strength of density dependence in survival varied with age and season. Understanding the seasonal timing of density dependence, especially with reference to underlying mechanisms, is important for the design of effective conservation strategies.


Subject(s)
Aging/physiology , Animal Migration/physiology , Birds/physiology , Seasons , Animals , Population Density , Time Factors
8.
Mol Ecol ; 22(10): 2797-809, 2013 May.
Article in English | MEDLINE | ID: mdl-23506506

ABSTRACT

The assessment of genetic architecture and selection history in genes for behavioural traits is fundamental to our understanding of how these traits evolve. The dopamine receptor D4 (DRD4) gene is a prime candidate for explaining genetic variation in novelty seeking behaviour, a commonly assayed personality trait in animals. Previously, we showed that a single nucleotide polymorphism in exon 3 of this gene is associated with exploratory behaviour in at least one of four Western European great tit (Parus major) populations. These heterogeneous association results were explained by potential variable linkage disequilibrium (LD) patterns between this marker and the causal variant or by other genetic or environmental differences among the populations. Different adaptive histories are further hypothesized to have contributed to these population differences. Here, we genotyped 98 polymorphisms of the complete DRD4 gene including the flanking regions for 595 individuals of the four populations. We show that the LD structure, specifically around the original exon 3 SNP is conserved across the four populations and does not explain the heterogeneous association results. Study-wide significant associations with exploratory behaviour were detected in more than one haplotype block around exon 2, 3 and 4 in two of the four tested populations with different allele effect models. This indicates genetic heterogeneity in the association between multiple DRD4 polymorphisms and exploratory behaviour across populations. The association signals were in or close to regions with signatures of positive selection. We therefore hypothesize that variation in exploratory and other dopamine-related behaviour evolves locally by occasional adaptive shifts in the frequency of underlying genetic variants.


Subject(s)
Adaptation, Biological/genetics , Exploratory Behavior/physiology , Genetic Variation , Passeriformes/genetics , Receptors, Dopamine D4/genetics , Selection, Genetic , Animals , Base Sequence , Europe , Genotype , Haplotypes/genetics , Linkage Disequilibrium , Models, Genetic , Molecular Sequence Data , Passeriformes/physiology , Phenotype , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Species Specificity
9.
Proc Biol Sci ; 279(1749): 4885-92, 2012 Dec 22.
Article in English | MEDLINE | ID: mdl-23097506

ABSTRACT

Individuals of the same species differ consistently in risky actions. Such 'animal personality' variation is intriguing because behavioural flexibility is often assumed to be the norm. Recent theory predicts that between-individual differences in propensity to take risks should evolve if individuals differ in future fitness expectations: individuals with high long-term fitness expectations (i.e. that have much to lose) should behave consistently more cautious than individuals with lower expectations. Consequently, any manipulation of future fitness expectations should result in within-individual changes in risky behaviour in the direction predicted by this adaptive theory. We tested this prediction and confirmed experimentally that individuals indeed adjust their 'exploration behaviour', a proxy for risk-taking behaviour, to their future fitness expectations. We show for wild great tits (Parus major) that individuals with experimentally decreased survival probability become faster explorers (i.e. increase risk-taking behaviour) compared to individuals with increased survival probability. We also show, using quantitative genetics approaches, that non-genetic effects (i.e. permanent environment effects) underpin adaptive personality variation in this species. This study thereby confirms a key prediction of adaptive personality theory based on life-history trade-offs, and implies that selection may indeed favour the evolution of personalities in situations where individuals differ in future fitness expectations.


Subject(s)
Environment , Exploratory Behavior , Phenotype , Songbirds/physiology , Animals , Female , Male , Netherlands , Seasons , Songbirds/genetics
10.
Physiol Biochem Zool ; 85(5): 504-15, 2012.
Article in English | MEDLINE | ID: mdl-22902379

ABSTRACT

Immune defense may vary as a result of trade-offs with other life-history traits or in parallel with variation in antigen levels in the environment. We studied lark species (Alaudidae) in the Arabian Desert and temperate Netherlands to test opposing predictions from these two hypotheses. Based on their slower pace of life, the trade-off hypothesis predicts relatively stronger immune defenses in desert larks compared with temperate larks. However, as predicted by the antigen exposure hypothesis, reduced microbial abundances in deserts should result in desert-living larks having relatively weaker immune defenses. We quantified host-independent and host-dependent microbial abundances of culturable microbes in ambient air and from the surfaces of birds. We measured components of immunity by quantifying concentrations of the acute-phase protein haptoglobin, natural antibody-mediated agglutination titers, complement-mediated lysis titers, and the microbicidal ability of whole blood. Desert-living larks were exposed to significantly lower concentrations of airborne microbes than temperate larks, and densities of some bird-associated microbes were also lower in desert species. Haptoglobin concentrations and lysis titers were also significantly lower in desert-living larks, but other immune indexes did not differ. Thus, contrary to the trade-off hypothesis, we found little evidence that a slow pace of life predicted increased immunological investment. In contrast, and in support of the antigen exposure hypothesis, associations between microbial exposure and some immune indexes were apparent. Measures of antigen exposure, including assessment of host-independent and host-dependent microbial assemblages, can provide novel insights into the mechanisms underlying immunological variation.


Subject(s)
Ecosystem , Immunity, Innate , Songbirds/immunology , Songbirds/microbiology , Air Microbiology , Animals , Blood Chemical Analysis , Candida albicans/immunology , Colony Count, Microbial , Desert Climate , Escherichia coli/immunology , Female , Haptoglobins/metabolism , Male , Netherlands , Saudi Arabia , Songbirds/metabolism , Species Specificity , Staphylococcus aureus/immunology
11.
J Anim Ecol ; 81(4): 827-37, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22309249

ABSTRACT

1. Habitat selection can affect individual fitness, and therefore, individuals are expected to assess habitat quality of potential breeding sites before settlement. 2. We investigated the role of social environment on juvenile dispersal behaviour in the great tit (Parus major). Two main contradictory hypotheses can be formulated regarding social effects on juvenile dispersal as follows: (i) High fledgling density and sex ratio may enhance the intensity of local (kin) competition and, therefore, reduce individual survival chance, enhance emigration and reduce settlement ('repulsion' hypothesis) (ii) Alternatively, high fledgling density and sex ratio may signal high-quality habitat or lead to aggregation and thus increase individual survival chance, reduce emigration and enhance settlement ('attraction' hypothesis). 3. To disentangle positive from negative effects of high density and male-biased sex ratio on dispersal, we manipulated the social composition of the fledgling population in 12 semi-isolated nest-box areas (plots) via a change of fledgling density (low/high) as well as fledgling sex ratio (female-biased/balanced/male-biased) across 3 years. We then tested whether experimental variation in male and female fledgling densities affected variation in local survival, emigration and settlement of juveniles, and whether social effects on survival and dispersal support the 'repulsion' or 'attraction' hypothesis. 4. We found no experimental effects on local survival and emigration probabilities. However, consistent with the 'attraction' hypothesis, settlement was significantly and positively affected by local experimental sex ratio in each of the study years: both male and female juveniles avoided female-biased plots and settled more in plots that were balanced and male-biased the previous year. 5. Our study provides unprecedented experimental evidence that local sex ratio plays a causal role in habitat selection. We suggest that settlers avoid female-biased plots because a high proportion of females may reflect the absence or the low quality of local resources in the habitat. Alternatively, male territory acquisition may be facilitated by a high local density of 'candidate' males, and therefore, juveniles were less successful in settling in female-biased plots.


Subject(s)
Animal Migration , Social Environment , Songbirds/physiology , Animals , Female , Male , Movement , Netherlands , Population Density , Seasons , Sex Distribution , Sex Ratio , Songbirds/growth & development
12.
J Anim Ecol ; 81(3): 564-72, 2012 May.
Article in English | MEDLINE | ID: mdl-22112192

ABSTRACT

1. Costs and benefits of reproduction are central to life-history theory, and the outcome of reproductive trade-offs may depend greatly on the ecological conditions in which they are estimated. In this study, we propose that costs and benefits of reproduction are modulated by social effects, and consequently that selection on reproductive rates depends on the social environment. 2. We tested this hypothesis in a great tit Parus major population. Over 3 years, we altered parental reproductive effort via brood size manipulations (small, intermediate, large) and manipulated the local social environment via changes in the local fledgling density (decreased, increased) and the local sex ratio (female-biased, control, male-biased). 3. We found that male-biased treatment consistently increased the subsequent local breeding densities over the 3-year study period. We also found that parents rearing small broods in these male-biased plots had increased survival rates compared with the other experimental groups. 4. We conclude that reproductive costs are the product of an interaction between parental phenotypic quality after reproduction and the social environment: raising a small brood had long-lasting effects on some phenotypic traits of the parents and that this increased their survival chances in male-biased environment where habitat quality may have deteriorated (via increased disease/predation risk or intraspecific competition). 5. Our results provide the first experimental evidence that local sex ratio can affect reproductive costs and thus optimal clutch size.


Subject(s)
Passeriformes/physiology , Reproduction/physiology , Sex Ratio , Animals , Ecosystem , Female , Male , Population Dynamics
13.
Behav Ecol Sociobiol ; 65(10): 1975-1986, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21957327

ABSTRACT

An individual's decision to disperse from the natal habitat can affect its future fitness prospects. Especially in species with sex-biased dispersal, we expect the cost-benefit balance for dispersal to vary according to the social environment (e.g., local sex ratio and density). However, little is known about the social factors affecting dispersal decisions and about the temporal and spatial patterns of the dispersal process. In our study, we investigated experimentally the effects of the social environment on post-fledging dispersal of juvenile great tits by simultaneously manipulating the density and sex ratio of fledglings within forest plots. We expected young females in the post-fledging period mainly to compete for resources related to food and, as they are subordinate to males, we predicted higher female dispersal from male-biased plots. Juvenile males compete for vacant territories already in late summer and autumn; thus, we predicted increased male dispersal from high density and male-biased plots. We found that juvenile females had a higher probability to leave male-biased plots and had dispersed further from male-biased plots in the later post-fledging phase when juvenile males start to become territorial and more aggressive. Juvenile males were least likely to leave male-biased plots and had smallest dispersal distances from female-biased plots early after fledging. The results suggest that the social environment differentially affected the costs and benefits of philopatry for male and female juveniles. The local sex ratio of individuals is thus an important social trait to be considered for understanding sex-specific dispersal processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00265-011-1207-1) contains supplementary material, which is available to authorized users.

14.
Proc Biol Sci ; 278(1725): 3713-22, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-21561978

ABSTRACT

The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms-which probably act in many species-can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought.


Subject(s)
Birds/physiology , Environment , Extinction, Biological , Animals , Climate Change , Nonlinear Dynamics , Population Density , Population Dynamics , Risk Assessment , Temperature
15.
Am Nat ; 176(2): 178-87, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20528475

ABSTRACT

In many socially monogamous animals, females engage in extrapair copulation (EPC), causing some broods to contain both within-pair and extrapair young (EPY). The proportion of all young that are EPY varies across populations and species. Because an EPC that does not result in EPY leaves no forensic trace, this variation in the proportion of EPY reflects both variation in the tendency to engage in EPC and variation in the extrapair fertilization (EPF) process across populations and species. We analyzed data on the distribution of EPY in broods of four passerines (blue tit, great tit, collared flycatcher, and pied flycatcher), with 18,564 genotyped nestlings from 2,346 broods in two to nine populations per species. Our Bayesian modeling approach estimated the underlying probability function of EPC (assumed to be a Poisson function) and conditional binomial EPF probability. We used an information theoretical approach to show that the expected distribution of EPC per female varies across populations but that EPF probabilities vary on the above-species level (tits vs. flycatchers). Hence, for these four passerines, our model suggests that the probability of an EPC mainly is determined by ecological (population-specific) conditions, whereas EPF probabilities reflect processes that are fixed above the species level.


Subject(s)
Passeriformes/physiology , Sexual Behavior, Animal , Animals , Bayes Theorem , Female , Genotype , Male , Passeriformes/genetics , Population Dynamics , Species Specificity
16.
Ecology ; 91(4): 1192-204, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20462133

ABSTRACT

Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the effect of changes in mean and variance of winter temperature on different vital rates across the life cycle. Subsequently, we quantify, using stochastic stage-structured models, how changes in the mean and variance of this environmental variable affect important characteristics of the future population dynamics, such as the time to extinction. Local mean winter temperature is predicted to strongly increase, and we show that this is likely to increase the population's persistence time via its positive effects on adult survival that outweigh the negative effects that higher temperatures have on fecundity. Interannual variation in winter temperature is predicted to decrease, which is also likely to increase persistence time via its positive effects on adult survival that outweigh the negative effects that lower temperature variability has on fecundity. Overall, a 0.1 degrees C change in mean temperature is predicted to alter median time to extinction by 1.5 times as many years as would a 0.1 degrees C change in the standard deviation in temperature, suggesting that the dynamics of oystercatchers are more sensitive to changes in the mean than in the interannual variability of this climatic variable. Moreover, as climate models predict larger changes in the mean than in the standard deviation of local winter temperature, the effects of future climatic variability on this population's time to extinction are expected to be overwhelmed by the effects of changes in climatic means. We discuss the mechanisms by which climatic variability can either increase or decrease population viability and how this might depend both on species' life histories and on the vital rates affected. This study illustrates that, for making reliable inferences about population consequences in species in which life history changes with age or stage, it is crucial to investigate the impact of climate change on vital rates across the entire life cycle. Disturbingly, such data are unavailable for most species of conservation concern.


Subject(s)
Charadriiformes/physiology , Climate Change , Animals , Ecosystem , Longevity , Population Dynamics , Time Factors
17.
Mol Ecol ; 19(4): 832-43, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20070517

ABSTRACT

Polymorphisms in the dopamine receptor D4 gene (DRD4) have been related to individual variation in novelty-seeking or exploratory behaviour in a variety of animals, including humans. Recently, the human DRD4 orthologue was sequenced in a wild bird, the great tit (Parus major) and a single nucleotide polymorphism in exon 3 of this gene (SNP830) was shown to be associated with variation in exploratory behaviour of lab-raised individuals originating from a single wild population. Here we test the generality of this finding in a large sample of free-living individuals from four European great tit populations, including the originally sampled population. We demonstrate that the association between SNP830 genotype and exploratory behaviour also exists in free-living birds from the original population. However, in the other three populations we found only limited evidence for an association: in two populations the association appeared absent; while in one there was a nonsignificant tendency. We could not confirm a previously demonstrated interaction with another DRD4 polymorphism, a 15 bp indel in the promoter region (ID15). As yet unknown differences in genetic or environmental background could explain why the same genetic polymorphism (SNP830) has a substantial effect on exploratory behaviour in one population, explaining 4.5-5.8% of the total variance-a large effect for a single gene influencing a complex behavioural trait-but not in three others. The confirmation of an association between SNP830 genotype and personality-related behaviour in a wild bird population warrants further research into potential fitness effects of the polymorphism, while also the population differences in the strength of the association deserve further investigation. Another important future challenge is the identification of additional loci influencing avian personality traits in the wild.


Subject(s)
Exploratory Behavior , Genetics, Population , Passeriformes/genetics , Personality/genetics , Receptors, Dopamine D4/genetics , Animals , Genotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Sequence Analysis, DNA
18.
Evolution ; 64(3): 836-51, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-19804401

ABSTRACT

Fluctuating and disruptive selection are important mechanisms for maintaining intrapopulation trait variation. Nonetheless, few field studies quantify selection pressures over long periods and identify what causes them to fluctuate. Diet specialists in oystercatchers differ in short-term payoffs (intake), but their long-term payoffs are hypothesized to be condition dependent. We test whether phenotypic selection on diet specialization fluctuates between years due to the frequency of specialists, competitor density, prey abundance, and environmental conditions. Short-term payoffs proved to be poor predictors of long-term fitness payoffs of specialization. Sex-differences in diet specialization were maintained by opposing directional fecundity and viability selection between the sexes. Contrasting other studies, selection on individual diet specialization was neither negative frequency- or density-dependent nor dependent on prey abundance. Notwithstanding, viability selection fluctuated strongly (stabilizing<-->disruptive) over the 26-year study period: slightly favoring generalists in most years, but strongly disfavoring generalists in rare harsh winters, suggesting generalists cannot cope with extreme conditions. Although selection fluctuated, mean selection on specialists was weak, which can explain how individual specialization can persist over long periods. Because rare events can dramatically affect long-term selective landscapes, more care should be taken to match the timescale of evolutionary studies to the temporal variability of critical environmental conditions.


Subject(s)
Charadriiformes/genetics , Charadriiformes/physiology , Diet , Selection, Genetic , Animals , Biological Evolution , Charadriiformes/anatomy & histology , Ecosystem , Female , Fertility , Genetic Fitness , Male , Models, Genetic , Phenotype , Sex Characteristics , Time Factors
19.
Ecology ; 90(3): 729-41, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19341143

ABSTRACT

Temporal variation in survival, fecundity, and dispersal rates is associated with density-dependent and density-independent processes. Stable natural populations are expected to be regulated by density-dependent factors. However, detecting this by investigating natural variation in density is difficult because density-dependent and independent factors affecting population dynamics may covary. Therefore, experiments are needed to assess the density dependence of demographic rates. In this study, we investigate the effect of density on demographic rates of the Seychelles Warbler (Acrocephalus sechellensis). This species, endemic to a few islands in the Indian Ocean, went through a severe population bottleneck in the middle of the last century, with only approximately 30 individuals left on one small island, but has since recovered. Our monitoring shows that since reaching the island's carrying capacity, population density has remained stable. However, we detected neither density-dependent reproduction nor survival on the basis of natural density variation during this stable period. For conservation reasons, new populations have been established by transferring birds to nearby suitable islands. Using the change of numbers during the process of saturation as a natural experiment, we investigated whether we can detect regulation of numbers via density-dependent survival and reproduction within these new populations. We found that populations were mainly regulated by density-dependent reproduction, and not survival. Variation in density between islands can be explained by food abundance, measured as insect density. Islands with the highest insect densities also had the highest bird densities and the largest breeding groups. Consequently, we suggest that the density-dependent effect on reproduction is caused by competition for food.


Subject(s)
Conservation of Natural Resources , Feeding Behavior/physiology , Oviposition/physiology , Passeriformes/physiology , Reproduction/physiology , Animal Feed , Animals , Breeding , Female , Fertility/physiology , Food Supply , Male , Population Density , Population Dynamics , Seychelles , Survival Analysis , Tropical Climate
20.
J Anim Ecol ; 78(4): 828-38, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19261035

ABSTRACT

1. In birds, local competition for food between pairs during the nestling phase may affect nestling growth and survival. A decrease in clutch size with an increase in breeding density could be an adaptive response to this competition. To investigate whether breeding density causally affected the clutch size of great tits (Parus major), we manipulated breeding density in three out of eight study plots by increasing nest-box densities. We expected clutch size in these plots to be reduced compared to that in control plots. 2. We analysed both the effects of variation in annual mean density (between-year comparisons) and experimental density (within-year comparison between plots) on clutch size variation, the occurrence of second broods and nestling growth. We examined within-female variation in clutch size to determine whether individual responses explain the variation over years. 3. Over the 11 years, population breeding density increased (from 0.33 to 0.50 pairs ha(-1)) while clutch size and the occurrence of second broods decreased (respectively from 10.0 to 8.5 eggs and from 0.39 to 0.05), consistent with a negative density-dependent effect for the whole population. Nestling growth showed a declining but nonsignificant trend over years. 4. The decline in population clutch size over years was primarily explained by changes occurring within individuals rather than selective disappearance of individuals laying large clutches. 5. Within years, breeding density differed significantly between manipulated plots (0.16 pairs ha(-1) vs. 0.77 pairs ha(-1)) but clutch size, occurrence of second broods and nestling growth were not affected by the experimental treatment, resulting in a discrepancy between the effects of experimental and annual variation in density on reproduction. 6. We discuss two hypotheses that could explain this discrepancy: (i) the decline in breeding performance over time was not due to density, but resulted from other, unknown factors. (ii) Density did cause the decline in breeding performance, but this was not due to local competition in the nestling phase. Instead, we suggest that competition acting in a different phase (e.g. before egg laying or after fledgling) was responsible for the density effect on clutch size among years.


Subject(s)
Clutch Size/physiology , Ecosystem , Passeriformes/physiology , Reproduction/physiology , Animals , Feeding Behavior , Female , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...