Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 241(5): 2243-2257, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37840369

ABSTRACT

Lichens are exemplar symbioses based upon carbon exchange between photobionts and their mycobiont hosts. Historically considered a two-way relationship, some lichen symbioses have been shown to contain multiple photobiont partners; however, the way in which these photobiont communities react to environmental change is poorly understood. Lichina pygmaea is a marine cyanolichen that inhabits rocky seashores where it is submerged in seawater during every tidal cycle. Recent work has indicated that L. pygmaea has a complex photobiont community including the cyanobionts Rivularia and Pleurocapsa. We performed rRNA-based metabarcoding and mRNA metatranscriptomics of the L. pygmaea holobiont at high and low tide to investigate community response to immersion in seawater. Carbon exchange in L. pygmaea is a dynamic process, influenced by both tidal cycle and the biology of the individual symbiotic components. The mycobiont and two cyanobiont partners exhibit distinct transcriptional responses to seawater hydration. Sugar-based compatible solutes produced by Rivularia and Pleurocapsa in response to seawater are a potential source of carbon to the mycobiont. We propose that extracellular processing of photobiont-derived polysaccharides is a fundamental step in carbon acquisition by L. pygmaea and is analogous to uptake of plant-derived carbon in ectomycorrhizal symbioses.


Subject(s)
Ascomycota , Cyanobacteria , Lichens , Ascomycota/physiology , Lichens/genetics , Cyanobacteria/genetics , Symbiosis , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...