Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 36(36): 9490-504, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27605622

ABSTRACT

UNLABELLED: Reconsolidation updating is a form of memory modification in which an existing memory can become destabilized upon retrieval and subsequently be modified via protein-synthesis-dependent reconsolidation. However, not all memories appear to destabilize upon retrieval and thus are not modifiable via reconsolidation updating approaches and the neurobiological basis for this remains poorly understood. Here, we report that auditory fear memories created with 10 tone-shock pairings are resistant to retrieval-dependent memory destabilization and are associated with an increase in the synaptic GluN2A/GluN2B ratio in neurons of the basal and lateral amygdala (BLA) compared with weaker fear memories created via one or three tone-shock pairings. To increase the GluN2A/GluN2B ratio after learning, we generated a line of mice that expresses an inducible and doxycycline-dependent GFP-GluN2A transgene specifically in α-CaMKII-positive neurons. Our findings indicate that increasing the GluN2A/GluN2B ratio in BLA α-CaMKII-positive neurons after a weak fear memory has consolidated inhibits retrieval-dependent memory destabilization and modification of the fear memory trace. This was associated with a reduction in retrieval-dependent AMPA receptor trafficking, as evidenced by a reduction in retrieval-dependent phosphorylation of GluR1 at serine-845. In addition, we determined that increasing the GluN2A/GluN2B ratio before fear learning significantly impaired long term memory consolidation, whereas short-term memory remained unaltered. An increase in the GluN2A/GluN2B ratio after fear learning had no influence on fear extinction or expression. Our results underscore the importance of NMDAR subunit composition for memory destabilization and suggest a mechanism for why some memories are resistant to modification. SIGNIFICANCE STATEMENT: Memory modification using reconsolidation updating is being examined as one of the potential treatment approaches for attenuating maladaptive memories associated with emotional disorders. However, studies have shown that, whereas weak memories can be modified using reconsolidation updating, strong memories can be resistant to this approach. Therefore, treatments targeting the reconsolidation process are unlikely to be clinically effective unless methods are devised to enhance retrieval-dependent memory destabilization. Currently, little is known about the cellular and molecular events that influence the induction of reconsolidation updating. Here, we determined that an increase in the GluN2A/GluN2B ratio interferes with retrieval-dependent memory destabilization and inhibits the initiation of reconsolidation updating.


Subject(s)
Amygdala/metabolism , Fear/psychology , Memory/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Acoustic Stimulation , Analysis of Variance , Animals , Anisomycin/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Disks Large Homolog 4 Protein , Excitatory Amino Acid Agents/pharmacology , Extinction, Psychological/drug effects , Female , Guanylate Kinases/metabolism , Male , Membrane Proteins/metabolism , Mental Recall/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Synthesis Inhibitors/pharmacology , Receptors, N-Methyl-D-Aspartate/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...