Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Methods ; 15(11): 941-946, 2018 11.
Article in English | MEDLINE | ID: mdl-30297964

ABSTRACT

CRISPR-Cas9 screening allows genome-wide interrogation of gene function. Currently, to achieve the high and uniform Cas9 expression desirable for screening, one needs to engineer stable and clonal Cas9-expressing cells-an approach that is not applicable in human primary cells. Guide Swap permits genome-scale pooled CRISPR-Cas9 screening in human primary cells by exploiting the unexpected finding that editing by lentivirally delivered, targeted guide RNAs (gRNAs) occurs efficiently when Cas9 is introduced in complex with nontargeting gRNA. We validated Guide Swap in depletion and enrichment screens in CD4+ T cells. Next, we implemented Guide Swap in a model of ex vivo hematopoiesis, and identified known and previously unknown regulators of CD34+ hematopoietic stem and progenitor cell (HSPC) expansion. We anticipate that this platform will be broadly applicable to other challenging cell types, and thus will enable discovery in previously inaccessible but biologically relevant human primary cell systems.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Gene Editing , Genome, Human , Hematopoietic Stem Cells/metabolism , RNA, Guide, Kinetoplastida/genetics , CD8-Positive T-Lymphocytes/cytology , Cells, Cultured , HEK293 Cells , Hematopoietic Stem Cells/cytology , Humans
2.
Data Brief ; 6: 423-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26866052

ABSTRACT

This article expands on crystal structure data for human H-RAS with mutations at position Y137, briefly described in a paper on the effects of phosphorylation of Y137 by ABL kinases (Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding, published in the FASEB Journal [1]). The crystal structures of the Y137E mutant (phosphorylation mimic) and of the Y137F mutant (without the hydroxyl group where phosphorylation occurs) were deposited in the Protein Data Bank with PDB codes 4XVQ (H-RAS(Y137E)) and 4XVR (H-RAS(Y137F)). This article includes details for expression and purification of RAS and its mutants with no affinity tags, in vitro exchange of guanine nucleotides, protein crystallization, X-ray data collection and structure refinement.

3.
FASEB J ; 29(9): 3750-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25999467

ABSTRACT

RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr(137). Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr(137) phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr(137) is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRAS(Y137F) and HRAS(Y137E) revealed conformation changes radiating from the mutated residue. Although consistent with Tyr(137) participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr(137) phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRAS(G12V) with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr(137) allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.


Subject(s)
Oncogene Proteins v-abl/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/physiology , Amino Acid Substitution , Animals , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mutation, Missense , Oncogene Proteins v-abl/chemistry , Oncogene Proteins v-abl/genetics , Phosphorylation/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Rats , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism , rab5 GTP-Binding Proteins/chemistry , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , raf Kinases/chemistry , raf Kinases/genetics , raf Kinases/metabolism
4.
PLoS One ; 10(3): e0121833, 2015.
Article in English | MEDLINE | ID: mdl-25811598

ABSTRACT

Constitutively active BCR-ABL kinase fusions are causative mutations in the pathogenesis of hematopoietic neoplasias including chronic myelogenous leukemia (CML). Although these fusions have been successfully targeted with kinase inhibitors, drug-resistance and relapse continue to limit long-term survival, highlighting the need for continued innovative drug discovery. We developed a time-resolved Förster resonance energy transfer (TR-FRET) -based assay to identify compounds that disrupt stimulation of the ABL kinase by blocking its ability to bind the positive regulator RIN1. This assay was used in a high throughput screen (HTS) of two small molecule libraries totaling 444,743 compounds. 708 confirmed hits were counter-screened to eliminate off-target inhibitors and reanalyzed to prioritize compounds with IC50 values below 10 µM. The CML cell line K562 was then used to identify five compounds that decrease MAPK1/3 phosphorylation, which we determined to be an indicator of RIN1-dependent ABL signaling. One of these compounds is a thiadiazole, and the other four are structurally related acyl piperidine amides. Notably, these five compounds lower cellular BCR-ABL1 kinase activity by blocking a positive regulatory interaction rather than directly inhibiting ABL catalytic function.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Biflavonoids/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Fluorescence Resonance Energy Transfer , Fusion Proteins, bcr-abl/metabolism , High-Throughput Screening Assays , Humans , K562 Cells , Mitogen-Activated Protein Kinase 1/metabolism , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Reproducibility of Results , Small Molecule Libraries/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...