Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7340, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957149

ABSTRACT

Many AAA+ (ATPases associated with diverse cellular activities) proteins function as protein or DNA remodelers by threading the substrate through the central pore of their hexameric assemblies. In this ATP-dependent translocating state, the substrate is gripped by the pore loops of the ATPase domains arranged in a universal right-handed spiral staircase organization. However, the process by which a AAA+ protein is activated to adopt this substrate-pore-loop arrangement remains unknown. We show here, using cryo-electron microscopy (cryo-EM), that the activation process of the Lon AAA+ protease may involve a pentameric assembly and a substrate-dependent incorporation of the sixth protomer to form the substrate-pore-loop contacts seen in the translocating state. Based on the structural results, we design truncated monomeric mutants that inhibit Lon activity by binding to the native pentamer and demonstrated that expressing these monomeric mutants in Escherichia coli cells containing functional Lon elicits specific phenotypes associated with lon deficiency, including the inhibition of persister cell formation. These findings uncover a substrate-dependent assembly process for the activation of a AAA+ protein and demonstrate a targeted approach to selectively inhibit its function within cells.


Subject(s)
Escherichia coli Proteins , Protease La , Cryoelectron Microscopy , Proteolysis , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Protein Domains , Protease La/genetics , Protease La/chemistry , Protease La/metabolism
2.
Elife ; 112022 02 17.
Article in English | MEDLINE | ID: mdl-35175195

ABSTRACT

Bacterial survival is fraught with antagonism, including that deriving from viruses and competing bacterial cells. It is now appreciated that bacteria mount complex antiviral responses; however, whether a coordinated defense against bacterial threats is undertaken is not well understood. Previously, we showed that Pseudomonas aeruginosa possess a danger-sensing pathway that is a critical fitness determinant during competition against other bacteria. Here, we conducted genome-wide screens in P. aeruginosa that reveal three conserved and widespread interbacterial antagonism resistance clusters (arc1-3). We find that although arc1-3 are coordinately activated by the Gac/Rsm danger-sensing system, they function independently and provide idiosyncratic defense capabilities, distinguishing them from general stress response pathways. Our findings demonstrate that Arc3 family proteins provide specific protection against phospholipase toxins by preventing the accumulation of lysophospholipids in a manner distinct from previously characterized membrane repair systems. These findings liken the response of P. aeruginosa to bacterial threats to that of eukaryotic innate immunity, wherein threat detection leads to the activation of specialized defense systems.


Subject(s)
Bacteria , Pseudomonas aeruginosa , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Eukaryota/metabolism , Immunity, Innate , Pseudomonas aeruginosa/metabolism
3.
Cell Host Microbe ; 28(2): 313-321.e6, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32470328

ABSTRACT

Selective and targeted removal of individual species or strains of bacteria from complex communities can be desirable over traditional, broadly acting antibacterials in several contexts. However, generalizable strategies that accomplish this with high specificity have been slow to emerge. Here we develop programmed inhibitor cells (PICs) that direct the potent antibacterial activity of the type VI secretion system (T6SS) against specified target cells. The PICs express surface-displayed nanobodies that mediate antigen-specific cell-cell adhesion to effectively overcome the barrier to T6SS activity in fluid conditions. We demonstrate the capacity of PICs to efficiently deplete low-abundance target bacteria without significant collateral damage to complex microbial communities. The only known requirements for PIC targeting are a Gram-negative cell envelope and a unique cell surface antigen; therefore, this approach should be generalizable to a wide array of bacteria and find application in medical, research, and environmental settings.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Adhesion/physiology , Bacterial Physiological Phenomena/drug effects , Gram-Negative Bacteria/drug effects , Type VI Secretion Systems/metabolism , Animals , Gastrointestinal Microbiome/physiology , Gram-Negative Bacteria/classification , Mice , Mice, Inbred C57BL
4.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30343895

ABSTRACT

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Subject(s)
ADP Ribose Transferases/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cytoskeletal Proteins/metabolism , N-Glycosyl Hydrolases/metabolism , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/genetics , ADP-Ribosylation , Adenosine Diphosphate/metabolism , Amino Acid Sequence , Bacterial Proteins/antagonists & inhibitors , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Catalytic Domain , Cytoskeletal Proteins/antagonists & inhibitors , Escherichia coli/growth & development , Escherichia coli/immunology , Escherichia coli/metabolism , Humans , Mutagenesis, Site-Directed , N-Glycosyl Hydrolases/chemistry , N-Glycosyl Hydrolases/genetics , Protein Structure, Tertiary , Protein Subunits/genetics , Protein Subunits/metabolism , Sequence Alignment , Serratia/metabolism , Time-Lapse Imaging
5.
Elife ; 62017 04 25.
Article in English | MEDLINE | ID: mdl-28440746

ABSTRACT

Proteins destined for the mitochondrial matrix are targeted to the inner membrane Tim17/23 translocon by their presequences. Inward movement is driven by the matrix-localized, Hsp70-based motor. The scaffold Tim44, interacting with the matrix face of the translocon, recruits other motor subunits and binds incoming presequence. The basis of these interactions and their functional relationships remains unclear. Using site-specific in vivo crosslinking and genetic approaches in Saccharomyces cerevisiae, we found that both domains of Tim44 interact with the major matrix-exposed loop of Tim23, with the C-terminal domain (CTD) binding Tim17 as well. Results of in vitro experiments showed that the N-terminal domain (NTD) is intrinsically disordered and binds presequence near a region important for interaction with Hsp70 and Tim23. Our data suggest a model in which the CTD serves primarily to anchor Tim44 to the translocon, whereas the NTD is a dynamic arm, interacting with multiple components to drive efficient translocation.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Protein Interaction Maps , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , DNA Mutational Analysis , Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mutagenesis, Site-Directed , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
J Biol Chem ; 289(41): 28689-96, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25157107

ABSTRACT

Translocation of proteins from the cytosol across the mitochondrial inner membrane is driven by action of the matrix-localized multi-subunit import motor, which is associated with the TIM23 translocon. The architecture of the import apparatus is not well understood. Here, we report results of site-specific in vivo photocross-linking along with genetic and coimmunoprecipitation analyses dissecting interactions between import motor subunits and the translocon. The translocon is composed of the two integral membrane proteins Tim23 and Tim17, each containing four membrane-spanning segments. We found that Tim23 having a photoactivatable cross-linker in the matrix exposed loop between transmembrane domains 1 and 2 (loop 1) cross-linked to Tim44. Alterations in this loop destabilized interaction of Tim44 with the translocon. Analogously, Tim17 having a photoactivatable cross-linker in the matrix exposed loop between transmembrane segments 1 and 2 (loop 1) cross-linked to Pam17. Alterations in this loop caused destabilization of the interaction of Pam17 with the translocon. Substitution of individual photoactivatable residues in Tim44 and Pam17 in regions we previously identified as important for translocon association resulted in cross-linking to Tim23 and Tim17, respectively. Our results are consistent with a model in which motor association is achieved via interaction of Tim23 with Tim44, which serves as a scaffold for association of other motor components, and of Tim17 with Pam17. As both Tim44 and Pam17 have been implicated as regulatory subunits of the motor, this positioning is conducive for responding to conformational changes in the translocon upon a translocating polypeptide entering the channel.


Subject(s)
Gene Expression Regulation, Fungal , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Molecular Motor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Cytosol/metabolism , Light , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/genetics , Molecular Sequence Data , Photochemical Processes , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...