Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(37): 20634-20645, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37683289

ABSTRACT

Small molecules that modulate the 14-3-3 protein-protein interaction (PPI) network represent valuable therapeutics and tool compounds. However, access has been lost to 14-3-3 PPI molecular glues of the cotylenin class, leading to investigations into the practical chemical syntheses of congeners and analogues. Here we report a concise synthesis of (-)-cotylenol via a 10-step asymmetric entry into a diversifiable 5-8-5 core. This route features a mild Liebeskind-Srogl fragment coupling that tolerates unprecedented steric hindrance to produce a highly congested ketone, and a tandem Claisen-ene cascade that establishes the 8-membered ring. Late-stage control of stereochemistry and functionality leads to (-)-cotylenol and sets the stage for focused library synthesis.


Subject(s)
Diterpenes , 14-3-3 Proteins , Gene Library , Ketones
2.
J Am Chem Soc ; 144(12): 5575-5582, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35298885

ABSTRACT

The oxidative addition of aryl halides to bipyridine- or phenanthroline-ligated nickel(I) is a commonly proposed step in nickel catalysis. However, there is a scarcity of complexes of this type that both are well-defined and undergo oxidative addition with aryl halides, hampering organometallic studies of this process. We report the synthesis of a well-defined Ni(I) complex, [(CO2Etbpy)NiICl]4 (1). Its solution-phase speciation is characterized by a significant population of monomer and a redox equilibrium that can be perturbed by π-acceptors and σ-donors. 1 reacts readily with aryl bromides, and mechanistic studies are consistent with a pathway proceeding through an initial Ni(I) → Ni(III) oxidative addition to form a Ni(III) aryl species. Such a process was demonstrated stoichiometrically for the first time, affording a structurally characterized Ni(III) aryl complex.


Subject(s)
Heterocyclic Compounds , Nickel , Catalysis , Molecular Structure , Oxidation-Reduction , Oxidative Stress
3.
J Am Chem Soc ; 142(19): 8928-8937, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32348673

ABSTRACT

We previously reported the development of an electron-deficient olefin (EDO) ligand, Fro-DO, that promotes the generation of quaternary carbon centers via Ni-catalyzed Csp3-Csp3 cross-coupling with aziridines. By contrast, electronically and structurally similar EDO ligands such as dimethyl fumarate and electron-deficient styrenes afford primarily ß-hydride elimination side reactivity. Only a few catalyst systems have been identified that promote the formation of quaternary carbons via Ni-catalyzed Csp3-Csp3 cross-coupling. Although Fro-DO represents a promising ligand in this regard, the basis for its superior performance is not well understood. Here we describe a detailed mechanistic study of the aziridine cross-coupling reaction and the role of EDO ligands in facilitating Csp3-Csp3 bond formation. This analysis reveals that cross-coupling proceeds by a Ni0/II cycle with a NiII azametallacyclobutane catalyst resting state. Turnover-limiting C-C reductive elimination occurs from a spectroscopically observable NiII-dialkyl intermediate bound to the EDO. Computational analysis shows that Fro-DO accelerates turnover limiting reductive elimination via LUMO lowering. However, it is no more effective than dimethyl fumarate at reducing the barrier to Csp3-Csp3 reductive elimination. Instead, Fro-DO's unique reactivity arises from its ability to associate favorably to NiII intermediates. Natural bond order second-order perturbation theory analysis of the catalytically relevant NiII intermediate indicates that Fro-DO binds to NiII through an additional stabilizing donor-acceptor interaction between its sulfonyl group and NiII. Design of new ligands to evaluate this proposal supports this model and has led to the development of a new and tunable ligand framework.


Subject(s)
Alkenes/chemistry , Aziridines/chemistry , Carbon/chemistry , Nickel/chemistry , Catalysis , Density Functional Theory , Electrons , Kinetics , Ligands , Molecular Structure
4.
J Am Chem Soc ; 142(12): 5800-5810, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32150401

ABSTRACT

Synthetic organic chemistry has seen major advances due to the merger of nickel and photoredox catalysis. A growing number of Ni-photoredox reactions are proposed to involve generation of excited nickel species, sometimes even in the absence of a photoredox catalyst. To gain insights about these excited states, two of our groups previously studied the photophysics of Ni(t-Bubpy)(o-Tol)Cl, which is representative of proposed intermediates in many Ni-photoredox reactions. This complex was found to have a long-lived excited state (τ = 4 ns), which was computationally assigned as a metal-to-ligand charge transfer (MLCT) state with an energy of 1.6 eV (38 kcal/mol). This work evaluates the computational assignment experimentally using a series of related complexes. Ultrafast UV-Vis and mid-IR transient absorption data suggest that a MLCT state is generated initially upon excitation but decays to a long-lived state that is 3d-d rather than 3MLCT in character. Dynamic cis,trans-isomerization of the square planar complexes was observed in the dark using 1H NMR techniques, supporting that this 3d-d state is tetrahedral and accessible at ambient temperature. Through a combination of transient absorption and NMR studies, the 3d-d state was determined to lie ∼0.5 eV (12 kcal/mol) above the ground state. Because the 3d-d state features a weak Ni-aryl bond, the excited Ni(II) complexes can undergo Ni homolysis to generate aryl radicals and Ni(I), both of which are supported experimentally. Thus, photoinduced Ni-aryl homolysis offers a novel mechanism of initiating catalysis by Ni(I).

5.
J Org Chem ; 83(13): 7121-7134, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29708344

ABSTRACT

A strategy enabled by C-H and alkene amination technologies for synthesizing the aminocyclitol natural product, pactamycin, is disclosed. This work features two disparate approaches for assembling the five-membered ring core of the target, the first of which utilizes acyl anion catalysis and a second involving ß-ketoester aerobic hydroxylation. Installation of the C3-N bond, one of three contiguous nitrogen centers, is made possible through Rh-catalyzed allylic C-H amination of a sulfamate ester. Subsequent efforts are presented to introduce the C1,C2 cis-diamino moiety en route to pactamycin, including carbamate-mediated alkene aziridination. In the course of these studies, assembly of the core of C2- epi-pactamycate, which bears the carbon skeleton and all of the requisite nitrogen and oxygen functional groups found in the natural product, has been achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...