Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.823
Filter
1.
Small ; : e2403176, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949041

ABSTRACT

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

2.
Angew Chem Int Ed Engl ; : e202407228, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975669

ABSTRACT

Three functionalized thienopyrazines (TPs), TP-MN (1), TP-CA (2), and TPT-MN (3) were designed and synthesized as self-assembled monolayers (SAMs) deposited on the NiOx film for tin-perovskite solar cells (TPSCs). Thermal, optical, electrochemical, morphological, crystallinity, hole mobility, and charge recombination properties, as well as DFT-derived energy levels with electrostatic surface potential mapping of these SAMs, have been thoroughly investigated and discussed. The structure of the TP-MN (1) single crystal was successfully grown and analyzed to support the uniform SAM produced on the ITO/NiOx substrate. When we used NiOx as HTM in TPSC, the device showed poor performance. To improve the efficiency of TPSC, we utilized a combination of new organic SAMs with NiOx HTM, the TPSC device exhibited the highest PCE of 7.7% for TP-MN (1). Hence, the designed NiOx/TP-MN (1) acts as a new model system for the development of efficient SAM-based TPSC. To the best of our knowledge, the combination of organic SAMs with anchoring CN/CN or CN/COOH groups, and NiOx HTM for TPSC has never been reported elsewhere. The TPSC device based on the NiOx/TP-MN bilayer exhibits great enduring stability for performance, retaining ~80% of its original value for shelf storage over 4000 h.

3.
Front Endocrinol (Lausanne) ; 15: 1398917, 2024.
Article in English | MEDLINE | ID: mdl-38974578

ABSTRACT

Background: Hyperuricemia, as a very prevalent chronic metabolic disease with increasing prevalence year by year, poses a significant burden on individual patients as well as on the global health care and disease burden, and there is growing evidence that it is associated with other underlying diseases such as hypertension and cardiovascular disease. The association between hyperuricemia and dietary inflammatory index (DII) scores was investigated in this study. Methods: This study enrolled 13, 040 adult subjects (aged ≥ 20 years) from the US National Health and Nutrition Survey from 2003 to 2018. The inflammatory potential of the diet was assessed by the DII score, and logistic regression was performed to evaluate the relationship between the DII score and the development of hyperuricemia; subgroup analyses were used to discuss the influence of other factors on the relationship. Results: Participants in the other quartiles had an increased risk of hyperuricemia compared to those in the lowest quartile of DII scores. Stratification analyses stratified by body mass index (BMI), sex, hypertension, drinking, diabetes, education level and albumin-creatinine-ratio (ACR) revealed that the DII score was also associated with the risk of hyperuricemia (P<0.05). There was an interaction in subgroup analysis stratified by sex, age, and hypertension (P for interaction <0.05). The results showed a linear-like relationship between DII and hyperuricemia, with a relatively low risk of developing hyperuricemia at lower DII scores and an increased risk of developing hyperuricemia as DII scores increased. Conclusions: This study showed that the risk of hyperuricemia increased at slightly higher DII scores (i.e., with pro-inflammatory diets), but not significantly at lower levels (i.e., with anti-inflammatory diets). The contribution of the DII score to the development of hyperuricemia increased with higher scores. The relationship between inflammatory diets and hyperuricemia requires more research on inflammation, and this study alerts the public that pro-inflammatory diets may increase the risk of developing hyperuricemia.


Subject(s)
Diet , Hyperuricemia , Inflammation , Humans , Hyperuricemia/epidemiology , Hyperuricemia/etiology , Male , Female , Middle Aged , Adult , Diet/adverse effects , Nutrition Surveys , Risk Factors , Aged , Cross-Sectional Studies , Body Mass Index , Uric Acid/blood
4.
Nat Biotechnol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977924

ABSTRACT

The use of modified nucleotides to suppress the interferon response and maintain translation of self-amplifying RNA (saRNA), which has been achieved for mRNA, has not yet succeeded. We identify modified nucleotides that, when substituted at 100% in saRNA, confer innate immune evasion and robust long-term protein expression, and when formulated as a vaccine, protect against lethal SARS-CoV-2 challenge in mice. This discovery advances saRNA therapeutics by enabling prolonged protein expression at low doses.

5.
Small ; : e2402761, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953299

ABSTRACT

Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.

6.
Mol Cell ; 84(13): 2472-2489.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996458

ABSTRACT

Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.


Subject(s)
Cryoelectron Microscopy , Hydro-Lyases , Pseudouridine , RNA, Transfer , Humans , RNA, Transfer/metabolism , RNA, Transfer/genetics , HEK293 Cells , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Pseudouridine/metabolism , Pseudouridine/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Catalytic Domain , Protein Binding , Mutation , Models, Molecular , Substrate Specificity , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/enzymology , Intramolecular Transferases
7.
Vet Parasitol ; 331: 110242, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38996589

ABSTRACT

Anthelmintic resistance to Haemonchus contortus creates increasing management challenges with small ruminants and camelids. The commercial vaccine, Barbervax®, contains H11 and H-gal-GP antigens, derived from gut mucosal membrane enzymes of H. contortus involved in digesting blood. Antibody neutralization of these antigens causes failure of H. contortus to digest blood, resulting in parasite death. H11 and H-gal-GP are considered "hidden" antigens, meaning the host immune system does not encounter these proteins under natural infection. Therefore, repeat immunization is required to maintain protective humoral responses. One previous study evaluated the safety of Barbervax® in camelids but the efficacy could not be assessed due to lack of successful infection in the controls. The objective of the current study was to evaluate clinical parameters of anemia, fecal egg counts (FECs), and humoral immune responses of healthy alpacas after immunizing with Barbervax® compared to non-vaccinated controls, all under natural environmental exposure on parasite-laden pastures. A crossover-like study was performed where twenty alpacas (298 ± 66 days of age) were assigned to be initially vaccinated with Barbervax® (n=10) or receive no treatment (n=10). Three doses of Barbervax® were administered at three-week intervals. Feces and blood were collected on Day -10, 0, 21, 43, 64, 85, 106, and 135 to evaluate FECs, packed cell volume (PCV), and antibody titers. Each group was kept on separate adjacent pastures. Tracer sheep (n=2 per study group) were introduced on Day 43 for a three-week period to ensure parasite acquisition. For the crossover-like component on Day 85, the initial non-vaccinated group was administered Barbervax® with dosing repeated on Day 106 and 135. Results indicated all initially vaccinated alpacas produced antibody titers to vaccine antigen that corresponded to lower mean FECs compared to the initially non-vaccinated group. A reduced mean FEC in the vaccinate group was observed 21 days after peak antibody titers. Similarly, when pooled vaccinate antibody titers were noted to wane on Day 106, an increase in FEC was observed at the following time point (Day 135). Conclusions from our study support the use of Barbervax® to reduce H. contortus burdens in alpacas. Furthermore, a less than 30-day lag time between antibody titer and resultant effect in FECs was observed. Additional studies assessing the ability of Barbervax® to reduce H. contortus burdens during subsequent grazing seasons would provide even greater information regarding the use of Barbervax® within alpaca herds to modulate H. contortus infections, refugia, and anthelmintic use.

8.
Chemosphere ; 363: 142746, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969223

ABSTRACT

Vanadate-based photocatalysts have recently attracted substantial attention owing to their outstanding photocatalytic activity for degrading organic pollutants and generating energy via photocatalytic processes. However, the relatively high price of vanadium has hindered the development of vanadate-based photocatalysts for various applications. Spent catalysts obtained from oil refineries typically contain a significant quantity of vanadium, making them valuable for recovery and utilization as precursors for the production of high-value-added photocatalysts. In this study, we transformed the V present in spent catalysts produced by the petrochemical industry into ternary vanadate-based photocatalysts [BiVO4/InVO4/Ag3VO4 (BVO/IVO/AVO, respectively)] designed for water remediation. The ternary composites revealed an enhanced photocatalytic capability, which was 1.42 and 5.1 times higher than those of the binary BVO/IVO and pristine AVO due to the facilitated charge separation. The ternary photocatalysts not only effectively treated wastewater containing various organic dyes, such as methylene blue (MB), rhodamine 6G (R6G), and brilliant green (BG), but also exhibited remarkable photocatalytic performance in the degradation of antibiotics, reduction of Cr(VI), and bacterial inactivation. This paper proposes a feasible route for recycling industrial waste as a source of vanadium to produce highly efficient vanadate-based photocatalysts.

9.
Biol Psychol ; : 108844, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992412

ABSTRACT

Enhanced Sensorimotor Rhythm activity has been linked to increased automation in motor execution. Although existing research demonstrates the positive effects of SMR neurofeedback training on improving golf putting performance, its influence on golf long-game performance remains unexplored. This study sought to address this gap by involving seventeen professional female golfers (Age =24.63±3.24 years, Handicap=2.06 ± 1.18) in a crossover-designed experiment incorporating both NFT and a no-training control condition. During the study, participants executed 40 150-yard swings while receiving continuous SMR neurofeedback. Pre- and post-testing included visual analog scales to assess psychological processes associated with SMR activities, including attention engagement, conscious motor control, and physical relaxation levels. The results revealed that a single session of NFT effectively heightened SMR power irrespective of T1 (p =.02) or T2 (p =.03), which was observed with improved swing accuracy compared to the control conditions, particularly in "To Pin" (p =.04, the absolute distance to the hole after the ball comes to a stop). Subjective assessments further indicated that SMR NFT contributed to a sense of ease and tranquility during motor preparation for the golf swing (attention engagement: p =.01, conscious motor control: p =.033, physical relaxation: p =.013), and which offered valuable insights into the potential mechanisms underlying the impact of SMR NFT on long-game performance. Additionally, in such practical applications professional athletes can utilize our single-session neurofeedback protocol to train efficiently and cost-effectively before competitions, thereby enhancing their opportunity to achieve a higher rank.

10.
J Formos Med Assoc ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019707

ABSTRACT

OBJECTIVES: This study aimed to identify clinical characteristics to differentiate multisystem inflammatory syndrome in children (MIS-C) and Kawasaki disease (KD) in Taiwan, an island with a delayed cluster of MIS-C and a high incidence of KD. Additionally, we studied risk factors for developing severe complications in patients with MIS-C. METHODS: We conducted a retrospective, multicenter, cohort, and observational study that linked data on patients with MIS-C between May and December 2022 and patients with KD between 2019 and 2021 from 12 medical centers. Hemodynamic compromise, defined as the need for inotropic support or fluid challenge, was recorded in patients with MIS-C. We also evaluated maximal coronary Z-scores before treatment and one month after disease onset. RESULTS: A total of 83 patients with MIS-C and 466 patients with KD were recruited. A 1:1 age and gender-matched comparison of 68 MIS-C and KD pairs showed that MIS-C patients had a lower percentage of positive BCG red halos, lower leukocyte/platelet counts, more gastrointestinal symptoms, and a higher risk of hemodynamic compromise. In Taiwan, 38.6% of MIS-C patients experienced hemodynamic compromise, with presence of conjunctivitis and elevated levels of procalcitonin (>1.62 ng/mL) identified as independent risk factors. CONCLUSIONS: We identified two independent risk factors associated with hemodynamic compromise in MIS-C patients. The comparison between matched MIS-C and KD patients highlighted significant differences in clinical presentations, like BCG red halos, which may aid in the differential diagnosis of the two disease entities, especially in regions with a high incidence rate of KD.

11.
Environ Pollut ; 358: 124472, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945190

ABSTRACT

In recent years, there has been a growing concern about air pollution and its impact on the air quality and human health, especially for fine particulate matter (PM2.5) and its associated secondary aerosols in urban areas. This study conducted a year-long field campaign to collect PM2.5 samples day and night in an urban area of central Taiwan. Higher PM2.5 mass concentrations were observed in winter (27.7 ± 9.7 µg/m3), followed by autumn (22.5 ± 8.3 µg/m3), spring (19.2 ± 6.4 µg/m3), and summer (11.0 ± 3.1 µg/m3). The dominant formation mechanism of secondary inorganic aerosols was heterogeneous reactions of NO3- at night and homogeneous reactions of SO42- during the day. Additionally, significant correlations were observed between aerosol liquid water content (ALWC) and NO3- during nighttime, indicating the importance of aqueous-phase NO3- formation. The role of aerosol acidity was explored and a unique alkaline condition was found in spring and summer, which showed lower PM2.5 concentrations than the neutralized condition. Under the neutralized condition, higher PM2.5 concentrations were commonly found when combining the ammonium-rich regime with molar ratios of [NO3-]/[SO42-] exceeding 1.6, suggesting the importance of reducing both NH3 and NOx. Furthermore, the results showed that reducing NH3 should be prioritized under high temperature conditions, while reducing NOx became important under low temperature conditions. Clustering of backward trajectories showed that long-range transport could enhance the formation of secondary aerosols, but local emissions emerged as the main factor driving high PM2.5 concentrations. This study provides insights for policymakers to improve air quality, suggesting that different mitigation strategies should be formulated based on meteorological variables and that using clean energy for vehicles and electricity generation is important to alleviate air pollution.

12.
Diagnostics (Basel) ; 14(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928638

ABSTRACT

Carotid blowout syndrome (CBS) is a rare yet life-threatening complication that occurs after radiation therapy (RT). This study aimed to determine the incidence of CBS in patients with head and neck cancer (HNC) undergoing contemporary RT and to explore potential discrepancies in the risk of CBS between nasopharyngeal cancer (NPC) and non-NPC patients. A total of 1084 patients with HNC who underwent RT between 2013 and 2023 were included in the study. All patients were under regular follow-ups at the radio-oncology department, and underwent annual contrast-enhanced computed tomography and/or magnetic resonance imaging for cancer recurrence surveillance. Experienced neuroradiologists and vascular neurologists reviewed the recruited patients' images. Patients were further referred to the neurology department for radiation vasculopathy evaluation. The primary outcome of this study was CBS. Patients were categorized into NPC and non-NPC groups and survival analysis was employed to compare the CBS risk between the two groups. A review of the literature on CBS incidence was also conducted. Among the enrolled patients, the incidence of CBS in the HNC, NPC, and non-NPC groups was 0.8%, 0.9%, and 0.7%, respectively. Kaplan-Meier analysis revealed no significant difference between the NPC and non-NPC groups (p = 0.34). Combining the findings for our cohort with those of previous studies revealed that the cumulative incidence of CBS in patients with HNC is 5% (95% CI = 3-7%) after both surgery and RT, 4% (95% CI = 2-6%) after surgery alone, and 5% (95% CI = 3-7%) after RT alone. Our findings indicate a low incidence of CBS in patients with HNC undergoing contemporary RT. Patients with NPC may have a CBS risk close to that of non-NPC patients. However, the low incidence of CBS could be a potentially cause of selection bias and underestimation bias.

13.
Food Chem ; 455: 139920, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850994

ABSTRACT

This work presents a hydrothermal method followed by a sonochemical treatment for synthesizing tantalum decorated on iron selenide (Ta/FeSe2) integrated with nitrogen-doped graphene (NGR) as a susceptible electrode material for detecting trolox (TRX) in berries samples. The surface morphology, structural characterizations, and electrochemical performances of the synthesized Ta/FeSe2/NGR composite were analyzed via spectrophotometric and voltammetry techniques. The GCE modified with Ta/FeSe2/NGR demonstrated an impressive linear range of 0.1 to 580.3 µM for TRX detection. Additionally, it achieved a remarkable limit of detection (LOD) of 0.059 µM, and it shows a high sensitivity of 2.266 µA µÐœ-1 cm-2. Here, we used density functional theory (DFT) to investigate the structures of TRX and TRX quinone and the locations of energy levels and electron transfer sites. The developed sensor exhibits significant selectivity, satisfactory cyclic and storage stability, and notable reproducibility. Moreover, the practicality of TRX was assessed in different types of berries, yielding satisfactory recoveries.


Subject(s)
Chromans , Fruit , Graphite , Nitrogen , Tantalum , Graphite/chemistry , Fruit/chemistry , Nitrogen/chemistry , Tantalum/chemistry , Chromans/chemistry , Chromans/analysis , Density Functional Theory , Electrochemical Techniques , Limit of Detection , Electrodes , Iron/chemistry , Iron/analysis
14.
Ann Acad Med Singap ; 53(2): 90-100, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38920233

ABSTRACT

Introduction: Frailty has an important impact on the health outcomes of older patients, and frailty screening is recommended as part of perioperative evaluation. The Hospital Frailty Risk Score (HFRS) is a validated tool that highlights frailty risk using 109 International Classification of Diseases, 10th revision (ICD-10) codes. In this study, we aim to compare HFRS to the Charlson Comorbidity Index (CCI) and validate HFRS as a predictor of adverse outcomes in Asian patients admitted to surgical services. Method: A retrospective study of electronic health records (EHR) was undertaken in patients aged 65 years and above who were discharged from surgical services between 1 April 2022 to 31 July 2022. Patients were stratified into low (HFRS <5), interme-diate (HFRS 5-15) and high (HFRS >15) risk of frailty. Results: Those at high risk of frailty were older and more likely to be men. They were also likely to have more comorbidities and a higher CCI than those at low risk of frailty. High HFRS scores were associated with an increased risk of adverse outcomes, such as mortality, hospital length of stay (LOS) and 30-day readmission. When used in combination with CCI, there was better prediction of mortality at 90 and 270 days, and 30-day readmission. Conclusion: To our knowledge, this is the first validation of HFRS in Singapore in surgical patients and confirms that high-risk HFRS predicts long LOS (≥7days), increased unplanned hospital readmissions (both 30-day and 270-day) and increased mortality (inpatient, 10-day, 30-day, 90-day, 270-day) compared with those at low risk of frailty.


Subject(s)
Frail Elderly , Frailty , Length of Stay , Patient Readmission , Humans , Aged , Male , Female , Retrospective Studies , Frailty/diagnosis , Frailty/epidemiology , Risk Assessment/methods , Aged, 80 and over , Singapore/epidemiology , Length of Stay/statistics & numerical data , Patient Readmission/statistics & numerical data , Frail Elderly/statistics & numerical data , Geriatric Assessment/methods , Surgical Procedures, Operative/statistics & numerical data , Comorbidity , Risk Factors , Hospital Mortality , Electronic Health Records , Postoperative Complications/epidemiology
15.
Proc Natl Acad Sci U S A ; 121(25): e2322588121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861598

ABSTRACT

The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lysosomes , Proteomics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Proteomics/methods , Lysosomes/metabolism , Proteome/metabolism , Intestines , Intestinal Mucosa/metabolism , Gonads/metabolism , Mass Spectrometry/methods , Organelles/metabolism
17.
Clin Interv Aging ; 19: 1051-1063, 2024.
Article in English | MEDLINE | ID: mdl-38883992

ABSTRACT

Background: The global aging population presents a significant challenge, with older adults experiencing declining physical and cognitive abilities and increased vulnerability to chronic diseases and adverse health outcomes. This study aims to develop an interpretable deep learning (DL) model to predict adverse events in geriatric patients within 72 hours of hospitalization. Methods: The study used retrospective data (2017-2020) from a major medical center in Taiwan. It included non-trauma geriatric patients who visited the emergency department and were admitted to the general ward. Data preprocessing involved collecting prognostic factors like vital signs, lab results, medical history, and clinical management. A deep feedforward neural network was developed, and performance was evaluated using accuracy, sensitivity, specificity, positive predictive value (PPV), and area under the receiver operating characteristic curve (AUC). Model interpretation utilized the Shapley Additive Explanation (SHAP) technique. Results: The analysis included 127,268 patients, with 2.6% experiencing imminent intensive care unit transfer, respiratory failure, or death during hospitalization. The DL model achieved AUCs of 0.86 and 0.84 in the validation and test sets, respectively, outperforming the Sequential Organ Failure Assessment (SOFA) score. Sensitivity and specificity values ranged from 0.79 to 0.81. The SHAP technique provided insights into feature importance and interactions. Conclusion: The developed DL model demonstrated high accuracy in predicting serious adverse events in geriatric patients within 72 hours of hospitalization. It outperformed the SOFA score and provided valuable insights into the model's decision-making process.


Subject(s)
Deep Learning , Hospitalization , Humans , Aged , Female , Male , Retrospective Studies , Hospitalization/statistics & numerical data , Aged, 80 and over , Taiwan , ROC Curve , Geriatric Assessment/methods , Prognosis , Intensive Care Units , Organ Dysfunction Scores , Area Under Curve , Emergency Service, Hospital , Risk Assessment
18.
Article in English | MEDLINE | ID: mdl-38902563

ABSTRACT

BACKGROUND: Asia's elderly Baby Boomer demographic (born between 1946 and 1964) faced a huge problem during the COVID-19 pandemic due to increased all-cause mortality. We aimed to provide a unique Taiwan situation regarding the impact of Baby Boomers on excess mortalities from all causes relative to non-Baby Boomers throughout distinct times of SARS-CoV-2 mutations during the COVID-19 pandemic. METHODS: We used the Poisson time series design with a Bayesian directed acyclic graphic approach to build the background mortality prior to the COVID-19 pandemic between 2015 and 2019. It was then used for predicting the expected all-cause deaths compared to the reported figures during the COVID-19 pandemic period based on Taiwan residents, an Omicron-naïve cohort. RESULTS: Baby Boomers experienced a 2% negative excess mortality in 2020 (Wuhan/D614G) and a 4% excess mortality in 2021 (Alpha/Delta) with a rising background mortality trend whereas non-Baby Boomers showed the corresponding figures of 4% negative excess and 1% excess with a stable trend. Baby Boomer and non-Baby Boomer excess mortality soared to 9% (95% CI: 7-10%) and 10% (95% CI: 9-11%), respectively, during the epidemic Omicron period from January to June 2022. Surprisingly, Baby Boomers aged 58-76 experienced the same 9% excess mortality as non-Baby Boomers aged 77 and beyond. Non-COVID-19 deaths were more prevalent among Baby Boomers than non-Baby Boomers (33% vs. 29%). CONCLUSION: Baby Boomers were more likely to die from COVID-19 in early pandemic and had more non-COVID-19 deaths in late pandemic than older non-Baby Boomers demonstrated in Taiwan Omicron-naïve cohort. For this vulnerable population, adequate access to medical care and medical capacity require more consideration.

19.
Am J Vet Res ; : 1-8, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889743

ABSTRACT

OBJECTIVE: The objective of this study was to optimize an MRI-based diffusion tensor imaging (DTI) protocol for imaging the plantar nerves at the level of the tarsus in normal equine limbs. SAMPLE: 12 pelvic cadaver limbs from horses without evidence of proximal suspensory pathology were imaged with a 3T MRI system. METHODS: For diffusion-weighted imaging, b values of 600, 800, and 1,000 s/mm2 were tested. Data were processed with DSI Studio. Cross-sectional areas of the medial and lateral plantar nerve along the plantar tarsus were recorded. The length and number of fiber tracts, signal-to-noise ratio, and DTI variables were recorded. RESULTS: At the level of interest, the mean cross-sectional areas of the plantar nerves ranged from 5.03 to 7.42 mm2. The DTI maps consistently generated tracts in the region of the lateral and medial plantar nerves with DTI values in the range of values reported for peripheral nerves in humans. Our findings demonstrate that DTI of the medial and lateral plantar nerves can be performed successfully and used to generate quantitative parameters including fractional anisotropy and mean, axial, and radial diffusivity. CLINICAL RELEVANCE: Quantitative data generated with this imaging technique can be used to noninvasively characterize the microstructural integrity of neural tissue with possible applications in the evaluation of pathologic changes to the plantar tarsal and metatarsal nerves of horses with proximal suspensory desmopathy.

20.
Pestic Biochem Physiol ; 202: 105933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879325

ABSTRACT

Citrus sour rot is a common postharvest citrus disease caused by Geotrichum citri-aurantiiti, which has led to enormous economic losses, particularly during rainy seasons. In this study, we aimed to clarify the impact of berberine hydrochloride (BH), the hydrochloride form of an isoquinoline alkaloid, on the control efficiency of citrus sour rot and its antifungal mode against G. citri-aurantii. Results demonstrated that BH markedly impede the propagation of G. citri-aurantii by delaying the spores development from dormant stage into swollen and germinating stages, with the MIC and MFC value of 0.08 and 0.16 g L-1, respectively. When the artificially inoculated citrus fruit in control group were totally rotted, the disease incidence of BH-treated groups decreased by 35.00%-73.30%, which effectively delayed the disease progression and almost did not negatively affect fruit quality. SEM observation, CFW and PI staining images revealed that BH caused significant damage to both the cell membrane and cell wall of G. citri-aurantii spores, whereas only the cell membrane of the mycelium was affected. The impact of cell wall was related to the block of chitin and ß-1,3-glucan synthesis. Transcriptome results and further verification proved that 0.5 × MIC BH treatment affected the glycolysis pathway and TCA cycle mainly by inhibiting the production of acetyl-CoA and pyruvate. Subsequently, the activities of key enzymes declined, resulting in a further decrease in ATP levels, ultimately inhibiting the germination of spores. In conlusion, BH delays citrus sour rot mainly by disrupting carbohydrate and energy metabolism of G. citri-aurantii spores.


Subject(s)
Berberine , Citrus , Energy Metabolism , Geotrichum , Plant Diseases , Spores, Fungal , Citrus/microbiology , Geotrichum/drug effects , Geotrichum/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Berberine/pharmacology , Energy Metabolism/drug effects , Spores, Fungal/drug effects , Carbohydrate Metabolism/drug effects , Fungicides, Industrial/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...