Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008780

ABSTRACT

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1β, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Subject(s)
Rats , Animals , Depression/drug therapy , Brain-Derived Neurotrophic Factor , Neuroprotective Agents , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Diabetes Mellitus , Receptors, Glutamate , CX3C Chemokine Receptor 1/genetics
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981520

ABSTRACT

This study aimed to investigate the intervention effect and mechanism of Xiaoyao Kangai Jieyu Recipe(XKJR) on hip-pocampal microglia and neuronal damage in mice with breast cancer related depression. The mouse model of breast cancer related depression was established by inoculation of 4T1 breast cancer cells in axilla and subcutaneous injection of corticosterone(30 mg·kg~(-1)). The successfully modeled mice were randomly divided into a model group, a positive drug group(capecitabine 60 mg·kg~(-1)+fluoxetine 19.5 mg·kg~(-1)), and XKJR group(19.5 mg·kg~(-1) crude drug), with 6 in each group. Another 6 normal mice were taken as a normal group. The administration groups were given corresponding drugs by gavage, while the normal and model groups were given an equal volume of distilled water, once a day for 21 consecutive days. The depressive behavior of mice was assessed by glucose consumption test, open field test and novelty-suppressed feeding test. Hematoxylin and eosin(HE) staining and tumor suppression rate were used to evaluate the changes of axillary tumors. The mRNA expressions and the relative protein expressions of interleukin-1β(IL-1β), interleukin-18(IL-18), cyclooxyganese-2(COX-2) and glutamyl-prolyl-tRNA synthetase(EPRs) in the hippocampus of mice were determined by quantitative real-time polymerase chain reaction(qRT-PCR) and immunohistochemistry, respectively. Immunofluorescence was performed to detect the mean fluorescence intensity of CD11b, a marker of hippocampal microglia activation. Nissler staining and transmission electron microscopy were employed to observe the morphological changes and the ultramorphological changes of hippocampal neurons, respectively. The experimental results indicated that compared with the normal group, the model group had reduced glucose consumption and lowered number of total activities in open field test(P<0.05, P<0.01), prolonged first feeding latency in no-velty-suppressed feeding test(P<0.01), and significant depression-like behavior; the contents of IL-1β, IL-18, COX-2, and EPRs in hippocampus were increased(P<0.05, P<0.01), with hippocampal microglia activation and obvious neuronal damage. Compared with the model group, the positive drug group and the XKJR group presented an improvement in depressive behaviors, a decrease in the contents of IL-1β, IL-18, COX-2 and EPRs in hippocampus, and an alleviation in the activation of hippocampal microglia and neuronal damage; the tumor suppression rates of positive drug and XKJR were 40.32% and 48.83%, respectively, suggesting a lower tumor growth rate than that of the model group. In summary, XKJR may improve hippocampal microglia activation and neuronal damage in mice with breast cancer related depression through activating COX signaling pathway.


Subject(s)
Mice , Animals , Depression/genetics , Interleukin-18 , Cyclooxygenase 2/genetics , Hippocampus , Glucose , Neoplasms
3.
Biomed Pharmacother ; 118: 109305, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31545264

ABSTRACT

Foot-and-mouth disease virus (FMDV) is an important pathogen that affects livestock breeding and causes huge economic losses worldwide. Currently, the development of antiviral agents to combat FMDV infection at the early stages is being explored. As viral replication critically depends on the host for nucleoside supply, host enzymes involved in nucleotides biosynthesis may represent potential targets for the development of antiviral agents. In the present study, the effects of IMP dehydrogenase (AVN-944 and mycophenolate mofetil) and dihydroorotate dehydrogenase (teriflunomide) inhibitors were evaluated both in vitro and in vivo. The results revealed that these compounds were effective in suppressing FMDV (O/MY98/BY/2010 and A/GD/MM/2013) infection. With regard to the antiviral mechanism, time-of-addition experiments revealed that these compounds were effective when added at the early stages of viral lifecycle (0-8 h post infection). However, exogenous guanosine/uridine eliminated the antiviral activity of these compounds. Importantly, treatment AVN-944 and teriflunomide significantly improved the survival of mice that were subcutaneously treated with FMDV. Together, the results of the present study indicate the broad-spectrum activities of anti-FMDV agents targeting IMP dehydrogenase or dihydroorotate dehydrogenase, which could be useful in developing strategies to prevent FMD.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Foot-and-Mouth Disease Virus/physiology , IMP Dehydrogenase/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Cell Death , Cell Line , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Foot-and-Mouth Disease/drug therapy , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/drug effects , Guanosine/pharmacology , IMP Dehydrogenase/metabolism , Mice, Inbred BALB C , Myocardium/pathology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Uridine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...