Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Phys Med ; 114: 102681, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37748358

ABSTRACT

PURPOSE: Steadily increasing use of computational/virtual phantoms in medical physics has motivated expanding development of new simulation methods and data representations for modelling human anatomy. This has emphasized the need for increased realism, user control, and availability. In breast cancer research, virtual phantoms have gained an important role in evaluating and optimizing imaging systems. For this paper, we have developed an algorithm to model breast abnormalities based on fractal Perlin noise. We demonstrate and characterize the extension of this approach to simulate breast lesions of various sizes, shapes, and complexity. MATERIALS AND METHOD: Recently, we developed an algorithm for simulating the 3D arrangement of breast anatomy based on Perlin noise. In this paper, we have expanded the method to also model soft tissue breast lesions. We simulated lesions within the size range of clinically representative breast lesions (masses, 5-20 mm in size). Simulated lesions were blended into simulated breast tissue backgrounds and visualized as virtual digital mammography images. The lesions were evaluated by observers following the BI-RADS assessment criteria. RESULTS: Observers categorized the lesions as round, oval or irregular, with circumscribed, microlobulated, indistinct or obscured margins. The majority of the simulated lesions were considered by the observers to have a realism score of moderate to well. The simulation method provides almost real-time lesion generation (average time and standard deviation: 1.4 ± 1.0 s). CONCLUSION: We presented a novel algorithm for computer simulation of breast lesions using Perlin noise. The algorithm enables efficient simulation of lesions, with different sizes and appearances.


Subject(s)
Breast Neoplasms , Fractals , Humans , Female , Computer Simulation , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Mammography/methods , Breast/diagnostic imaging , Breast/pathology , Phantoms, Imaging
2.
J Med Imaging (Bellingham) ; 10(Suppl 2): S22408, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37274777

ABSTRACT

Purpose: Breast cancer screening is predominantly performed using digital mammography (DM), but digital breast tomosynthesis (DBT) has higher sensitivity. DBT demands more resources than DM, and it might be more feasible to reserve DBT for women with a clear benefit from the technique. We explore if artificial intelligence (AI) can select women who would benefit from DBT imaging. Approach: We used data from Malmö Breast Tomosynthesis Screening Trial, where all women prospectively were examined with separately double read DM and DBT. We retrospectively analyzed DM examinations (n=14768) with a breast cancer detection system and used the provided risk score (1 to 10) for risk stratification. We tested how different score thresholds for adding DBT to an initial DM affects the number of detected cancers, additional DBT examinations needed, detection rate, and false positives. Results: If using a threshold of 9.0, 25 (26%) more cancers would be detected compared to using DM alone. Of the 41 cancers only detected on DBT, 61% would be detected, with only 1797 (12%) of the women examined with both DM and DBT. The detection rate for the added DBT would be 14/1000 women, whereas the false-positive recalls would be increased with 58 (21%). Conclusion: Using DBT only for selected high gain cases could be an alternative to complete DBT screening. AI can analyze initial DM images to identify high gain cases where DBT can be added during the same visit. There might be logistical challenges, and further studies in a prospective setting are necessary.

3.
J Med Imaging (Bellingham) ; 10(6): 061402, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36779038

ABSTRACT

Purpose: We describe the design and implementation of the Malmö Breast ImaginG (M-BIG) database, which will support research projects investigating various aspects of current and future breast cancer screening programs. Specifically, M-BIG will provide clinical data to:1.investigate the effect of breast cancer screening on breast cancer prognosis and mortality;2.develop and validate the use of artificial intelligence and machine learning in breast image interpretation; and3.develop and validate image-based radiological breast cancer risk profiles. Approach: The M-BIG database is intended to include a wide range of digital mammography (DM) and digital breast tomosynthesis (DBT) examinations performed on women at the Mammography Clinic in Malmö, Sweden, from the introduction of DM in 2004 through 2020. Subjects may be included multiple times and for diverse reasons. The image data are linked to extensive clinical, diagnostic, and demographic data from several registries. Results: To date, the database contains a total of 451,054 examinations from 104,791 women. During the inclusion period, 95,258 unique women were screened. A total of 19,968 examinations were performed using DBT, whereas the rest used DM. Conclusions: We describe the design and implementation of the M-BIG database as a representative and accessible medical image database linked to various types of medical data. Work is ongoing to add features and curate the existing data.

4.
Eur Radiol ; 33(5): 3754-3765, 2023 May.
Article in English | MEDLINE | ID: mdl-36502459

ABSTRACT

OBJECTIVES: Digital breast tomosynthesis (DBT) can detect more cancers than the current standard breast screening method, digital mammography (DM); however, it can substantially increase the reading workload and thus hinder implementation in screening. Artificial intelligence (AI) might be a solution. The aim of this study was to retrospectively test different ways of using AI in a screening workflow. METHODS: An AI system was used to analyse 14,772 double-read single-view DBT examinations from a screening trial with paired DM double reading. Three scenarios were studied: if AI can identify normal cases that can be excluded from human reading; if AI can replace the second reader; if AI can replace both readers. The number of detected cancers and false positives was compared with DM or DBT double reading. RESULTS: By excluding normal cases and only reading 50.5% (7460/14,772) of all examinations, 95% (121/127) of the DBT double reading detected cancers could be detected. Compared to DM screening, 27% (26/95) more cancers could be detected (p < 0.001) while keeping recall rates at the same level. With AI replacing the second reader, 95% (120/127) of the DBT double reading detected cancers could be detected-26% (25/95) more than DM screening (p < 0.001)-while increasing recall rates by 53%. AI alone with DBT has a sensitivity similar to DM double reading (p = 0.689). CONCLUSION: AI can open up possibilities for implementing DBT screening and detecting more cancers with the total reading workload unchanged. Considering the potential legal and psychological implications, replacing the second reader with AI would probably be most the feasible approach. KEY POINTS: • Breast cancer screening with digital breast tomosynthesis and artificial intelligence can detect more cancers than mammography screening without increasing screen-reading workload. • Artificial intelligence can either exclude low-risk cases from double reading or replace the second reader. • Retrospective study based on paired mammography and digital breast tomosynthesis screening data.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Retrospective Studies , Artificial Intelligence , Early Detection of Cancer/methods , Breast/diagnostic imaging , Mammography/methods , Mass Screening/methods
5.
J Med Imaging (Bellingham) ; 9(3): 033502, 2022 May.
Article in English | MEDLINE | ID: mdl-35647217

ABSTRACT

Purpose: Malignant breast lesions can be distinguished from benign lesions by their mechanical properties. This has been utilized for mechanical imaging in which the stress distribution over the breast is measured. Mechanical imaging has shown the ability to identify benign or normal cases and to reduce the number of false positives from mammography screening. Our aim was to develop a model of mechanical imaging acquisition for simulation purposes. To that end, we simulated mammographic compression of a computer model of breast anatomy and lesions. Approach: The breast compression was modeled using the finite element method. Two finite element breast models of different sizes were used and solved using linear elastic material properties in open-source virtual clinical trial (VCT) software. A spherical lesion (15 mm in diameter) was inserted into the breasts, and both the location and stiffness of the lesion were varied extensively. The average stress over the breast and the average stress at the lesion location, as well as the relative mean pressure over lesion area (RMPA), were calculated. Results: The average stress varied 6.2-6.5 kPa over the breast surface and 7.8-11.4 kPa over the lesion, for different lesion locations and stiffnesses. These stresses correspond to an RMPA of 0.80 to 1.46. The average stress was 20% to 50% higher at the lesion location compared with the average stress over the entire breast surface. Conclusions: The average stress over the breast and the lesion location corresponded well to clinical measurements. The proposed model can be used in VCTs for evaluation and optimization of mechanical imaging screening strategies.

6.
J Med Imaging (Bellingham) ; 9(3): 033503, 2022 May.
Article in English | MEDLINE | ID: mdl-35685119

ABSTRACT

Purpose: Image-based analysis of breast tumor growth rate may optimize breast cancer screening and diagnosis by suggesting optimal screening intervals and guide the clinical discussion regarding personalized screening based on tumor aggressiveness. Simulation-based virtual clinical trials (VCTs) can be used to evaluate and optimize medical imaging systems and design clinical trials. This study aimed to simulate tumor growth over multiple screening rounds. Approach: This study evaluates a preliminary method for simulating tumor growth. Clinical data on tumor volume doubling time (TVDT) was used to fit a probability distribution ("clinical fit") of TVDTs. Simulated tumors with TVDTs sampled from the clinical fit were inserted into 30 virtual breasts ("simulated cohort") and used to simulate mammograms. Based on the TVDT, two successive screening rounds were simulated for each virtual breast. TVDTs from clinical and simulated mammograms were compared. Tumor sizes in the simulated mammograms were measured by a radiologist in three repeated sessions to estimate TVDT. Results: The mean TVDT was 297 days (standard deviation, SD, 169 days) in the clinical fit and 322 days (SD, 217 days) in the simulated cohort. The mean estimated TVDT was 340 days (SD, 287 days). No significant difference was found between the estimated TVDTs from simulated mammograms and clinical TVDT values ( p > 0.5 ). No significant difference ( p > 0.05 ) was observed in the reproducibility of the tumor size measurements between the two screening rounds. Conclusions: The proposed method for tumor growth simulation has demonstrated close agreement with clinical results, supporting potential use in VCTs of temporal breast imaging.

7.
J Med Imaging (Bellingham) ; 9(Suppl 1): 012205, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35309720

ABSTRACT

Purpose: For 50 years now, SPIE Medical Imaging (MI) conferences have been the premier forum for disseminating and sharing new ideas, technologies, and concepts on the physics of MI. Approach: Our overarching objective is to demonstrate and highlight the major trajectories of imaging physics and how they are informed by the community and science present and presented at SPIE MI conferences from its inception to now. Results: These contributions range from the development of image science, image quality metrology, and image reconstruction to digital x-ray detectors that have revolutionized MI modalities including radiography, mammography, fluoroscopy, tomosynthesis, and computed tomography (CT). Recent advances in detector technology such as photon-counting detectors continue to enable new capabilities in MI. Conclusion: As we celebrate the past 50 years, we are also excited about what the next 50 years of SPIE MI will bring to the physics of MI.

8.
Radiol Artif Intell ; 3(6): e200299, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34870215

ABSTRACT

PURPOSE: To investigate how an artificial intelligence (AI) system performs at digital mammography (DM) from a screening population with ground truth defined by digital breast tomosynthesis (DBT), and whether AI could detect breast cancers at DM that had originally only been detected at DBT. MATERIALS AND METHODS: In this secondary analysis of data from a prospective study, DM examinations from 14 768 women (mean age, 57 years), examined with both DM and DBT with independent double reading in the MalmÓ§ Breast Tomosynthesis Screening Trial (MBTST) (ClinicalTrials.gov: NCT01091545; data collection, 2010-2015), were analyzed with an AI system. Of 136 screening-detected cancers, 95 cancers were detected at DM and 41 cancers were detected only at DBT. The system identifies suspicious areas in the image, scored 1-100, and provides a risk score of 1 to 10 for the whole examination. A cancer was defined as AI detected if the cancer lesion was correctly localized and scored at least 62 (threshold determined by the AI system developers), therefore resulting in the highest examination risk score of 10. Data were analyzed with descriptive statistics, and detection performance was analyzed with receiver operating characteristics. RESULTS: The highest examination risk score was assigned to 10% (1493 of 14 786) of the examinations. With 90.8% specificity, the AI system detected 75% (71 of 95) of the DM-detected cancers and 44% (18 of 41) of cancers at DM that had originally been detected only at DBT. The majority were invasive cancers (17 of 18). CONCLUSION: Almost half of the additional DBT-only screening-detected cancers in the MBTST were detected at DM with AI. AI did not reach double reading performance; however, if combined with double reading, AI has the potential to achieve a substantial portion of the benefit of DBT screening.Keywords: Computer-aided Diagnosis, Mammography, Breast, Diagnosis, Classification, Application DomainClinical trial registration no. NCT01091545© RSNA, 2021.

9.
Radiat Prot Dosimetry ; 195(3-4): 363-371, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34144597

ABSTRACT

Virtual clinical trials (VCTs) can be used to evaluate and optimise medical imaging systems. VCTs are based on computer simulations of human anatomy, imaging modalities and image interpretation. OpenVCT is an open-source framework for conducting VCTs of medical imaging, with a particular focus on breast imaging. The aim of this paper was to evaluate the OpenVCT framework in two tasks involving digital breast tomosynthesis (DBT). First, VCTs were used to perform a detailed comparison of virtual and clinical reading studies for the detection of lesions in digital mammography and DBT. Then, the framework was expanded to include mechanical imaging (MI) and was used to optimise the novel combination of simultaneous DBT and MI. The first experiments showed close agreement between the clinical and the virtual study, confirming that VCTs can predict changes in performance of DBT accurately. Work in simultaneous DBT and MI system has demonstrated that the system can be optimised in terms of the DBT image quality. We are currently working to expand the OpenVCT software to simulate MI acquisition more accurately and to include models of tumour growth. Based on our experience to date, we envision a future in which VCTs have an important role in medical imaging, including support for more imaging modalities, use with rare diseases and a role in training and testing artificial intelligence (AI) systems.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Computer Simulation , Female , Humans , Mammography , Radiographic Image Enhancement
10.
Eur J Radiol ; 139: 109686, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33819803

ABSTRACT

PURPOSE: To validate a candidate instrument, to be used by different professionals to assess image quality in digital mammography (DM), against detection performance results. METHODS: A receiver operating characteristics (ROC) study was conducted to assess the detection performance in DM images with four different image quality levels due to different quality issues. Fourteen expert breast radiologists from five countries assessed a set of 80 DM cases, containing 60 lesions (40 cancers, 20 benign findings) and 20 normal cases. A visual grading analysis (VGA) study using a previously-described candidate instrument was conducted to evaluate a subset of 25 of the images used in the ROC study. Eight radiologists that had participated in the ROC study, and seven expert breast-imaging physicists, evaluated this subset. The VGA score (VGAS) and the ROC and visual grading characteristics (VGC) areas under the curve (AUCROC and AUCVGC) were compared. RESULTS: No large differences in image quality among the four levels were detected by either ROC or VGA studies. However, the ranking of the four levels was consistent: level 1 (partial AUCROC: 0.070, VGAS: 6.77) performed better than levels 2 (0.066, 6.15), 3 (0.061, 5.82), and 4 (0.062, 5.37). Similarity between radiologists' and physicists' assessments was found (average VGAS difference of 10 %). CONCLUSIONS: The results from the candidate instrument were found to correlate with those from ROC analysis, when used by either observer group. Therefore, it may be used by different professionals, such as radiologists, radiographers, and physicists, to assess clinically-relevant image quality variations in DM.


Subject(s)
Breast Neoplasms , Mammography , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Humans , ROC Curve , Radiographic Image Enhancement , Radiologists
11.
Eur Radiol ; 31(7): 5335-5343, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33475774

ABSTRACT

OBJECTIVES: To study how radiologists' perceived ability to interpret digital mammography (DM) images is affected by decreases in image quality. METHODS: One view from 45 DM cases (including 30 cancers) was degraded to six levels each of two acquisition-related issues (lower spatial resolution and increased quantum noise) and three post-processing-related issues (lower and higher contrast and increased correlated noise) seen during clinical evaluation of DM systems. The images were shown to fifteen breast screening radiologists from five countries. Aware of lesion location, the radiologists selected the most-degraded mammogram (indexed from 1 (reference) to 7 (most degraded)) they still felt was acceptable for interpretation. The median selected index, per degradation type, was calculated separately for calcification and soft tissue (including normal) cases. Using the two-sided, non-parametric Mann-Whitney test, the median indices for each case and degradation type were compared. RESULTS: Radiologists were not tolerant to increases (medians: 1.5 (calcifications) and 2 (soft tissue)) or decreases (median: 2, for both types) in contrast, but were more tolerant to correlated noise (median: 3, for both types). Increases in quantum noise were tolerated more for calcifications than for soft tissue cases (medians: 3 vs. 4, p = 0.02). Spatial resolution losses were considered less acceptable for calcification detection than for soft tissue cases (medians: 3.5 vs. 5, p = 0.001). CONCLUSIONS: Perceived ability of radiologists for image interpretation in DM was affected not only by image acquisition-related issues but also by image post-processing issues, and some of those issues affected calcification cases more than soft tissue cases. KEY POINTS: • Lower spatial resolution and increased quantum noise affected the radiologists' perceived ability to interpret calcification cases more than soft tissue lesion or normal cases. • Post-acquisition image processing-related effects, not only image acquisition-related effects, also impact the perceived ability of radiologists to interpret images and detect lesions. • In addition to current practices, post-acquisition image processing-related effects need to also be considered during the testing and evaluation of digital mammography systems.


Subject(s)
Breast Neoplasms , Calcinosis , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Female , Humans , Mammography , Radiographic Image Enhancement , Radiologists
12.
Eur J Radiol ; 134: 109464, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33307458

ABSTRACT

PURPOSE: To develop a candidate instrument to assess image quality in digital mammography, by identifying clinically relevant features in images that are affected by lower image quality. METHODS: Interviews with fifteen expert breast radiologists from five countries were conducted and analysed by using adapted directed content analysis. During these interviews, 45 mammographic cases, containing 44 lesions (30 cancers, 14 benign findings), and 5 normal cases, were shown with varying image quality. The interviews were performed to identify the structures from breast tissue and lesions relevant for image interpretation, and to investigate how image quality affected the visibility of those structures. The interview findings were used to develop tentative items, which were evaluated in terms of wording, understandability, and ambiguity with expert breast radiologists. The relevance of the tentative items was evaluated using the content validity index (CVI) and modified kappa index (k*). RESULTS: Twelve content areas, representing the content of image quality in digital mammography, emerged from the interviews and were converted into 29 tentative items. Fourteen of these items demonstrated excellent CVI ≥ 0.78 (k* > 0.74), one showed good CVI < 0.78 (0.60 ≤ k* ≤ 0.74), while fourteen were of fair or poor CVI < 0.78 (k* ≤ 0.59). In total, nine items were deleted and five were revised or combined resulting in 18 items. CONCLUSIONS: By following a mixed-method methodology, a candidate instrument was developed that may be used to characterise the clinically-relevant impact that image quality variations can have on digital mammography.


Subject(s)
Breast , Mammography , Humans , Reproducibility of Results , Research Design
13.
J Comput Assist Tomogr ; 44(5): 673-680, 2020.
Article in English | MEDLINE | ID: mdl-32936576

ABSTRACT

OBJECTIVES: This study aimed to evaluate the image quality of 7 iterative reconstruction (IR) algorithms in comparison to filtered back-projection (FBP) algorithm. METHODS: An anthropomorphic chest phantom was scanned on 4 computed tomography scanners and reconstructed with FBP and IR algorithms. Image quality of anatomical details-large/medium-sized pulmonary vessels, small pulmonary vessels, thoracic wall, and small and large lesions-was scored. Furthermore, general impression of noise, image contrast, and artifacts were evaluated. Visual grading regression was used to analyze the data. Standard deviations were measured, and the noise power spectrum was calculated. RESULTS: Iterative reconstruction algorithms showed significantly better results when compared with FBP for these criteria (regression coefficients/P values in parentheses): vessels (FIRST: -1.8/0.05, AIDR Enhanced: <-2.3/0.01, Veo: <-0.1/0.03, ADMIRE: <-2.1/0.04), lesions (FIRST: <-2.6/0.01, AIDR Enhanced: <-1.9/0.03, IMR1: <-2.7/0.01, Veo: <-2.4/0.02, ADMIRE: -2.3/0.02), image noise (FIRST: <-3.2/0.004, AIDR Enhanced: <-3.5/0.002, IMR1: <-6.1/0.001, iDose: <-2.3/0.02, Veo: <-3.4/0.002, ADMIRE: <-3.5/0.02), image contrast (FIRST: -2.3/0.01, AIDR Enhanced: -2.5/0.01, IMR1: -3.7/0.001, iDose: -2.1/0.02), and artifacts (FIRST: <-3.8/0.004, AIDR Enhanced: <-2.7/0.02, IMR1: <-2.6/0.02, iDose: -2.1/0.04, Veo: -2.6/0.02). The iDose algorithm was the only IR algorithm that maintained the noise frequencies. CONCLUSIONS: Iterative reconstruction algorithms performed differently on all evaluated criteria, showing the importance of careful implementation of algorithms for diagnostic purposes.


Subject(s)
Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Algorithms , Artifacts , Observer Variation , Reproducibility of Results , Signal-To-Noise Ratio
14.
Radiat Prot Dosimetry ; 187(1): 8-16, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31111927

ABSTRACT

The purpose was to examine if scatter correction software could replace a grid while maintaining image quality and reducing radiation dose for pelvic DR examinations. Grid images was produced with 70 kV and 16mAs. Anthropomorphic- and Contrast Detail RADiography (CDRAD) non-grid images were produced with 60 kV, 80 kV and 90 kV combined with five different mAs and scatter correction software. The anthropomorphic images were analyzed by absolute Visual Grading Analysis (VGA). The CDRAD images were analyzed using the CDRAD analysis software. The results showed a total of 54.6% non-grid images were evaluated as unsuitable for diagnostic use by the VGA. The CDRAD grid images showed that the IQF_inv values were significantly different (p = 0.0001) when compared to every group of non-grid images. Hereby, the conclusion stated that the scatter correction software did not compensate for the loss in image quality due to scattered radiation at the exposure levels included in a pelvic examination.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Pelvis/diagnostic imaging , Phantoms, Imaging , Radiographic Image Enhancement/methods , Software , Humans , Radiation Dosage , Radiography , Scattering, Radiation
16.
Lancet Oncol ; 19(11): 1493-1503, 2018 11.
Article in English | MEDLINE | ID: mdl-30322817

ABSTRACT

BACKGROUND: Digital breast tomosynthesis is an advancement of the mammographic technique, with the potential to increase detection of lesions during breast cancer screening. The main aim of the Malmö Breast Tomosynthesis Screening Trial (MBTST) was to investigate the accuracy of one-view digital breast tomosynthesis in population screening compared with standard two-view digital mammography. METHODS: In this prospective, population-based screening study, of women aged 40-74 years invited to attend national breast cancer screening at Skåne University Hospital, Malmö, Sweden, a random sample was asked to participate in the trial (every third woman who was invited to attend regular screening was invited to participate). Participants had to be able to speak English or Swedish and were excluded from the study if they were pregnant. Participants underwent screening with two-view digital mammography (ie, craniocaudal and mediolateral oblique views) followed by one-view digital breast tomosynthesis with reduced compression in the mediolateral oblique view (with a wide tomosynthesis angle of 50°) at one screening visit. Images were read with masked double reading and scoring by two separate reading groups, one for each method, made up of seven radiologists. Any cancer detected with a malignancy probability score of three or higher by any reader in either group was discussed in a consensus meeting of at least two readers, from which the decision of whether or not to recall the woman for further investigation was made. The primary outcome measures were sensitivity and specificity of breast cancer detection. Secondary outcome measures were screening performance measures of cancer detection, recall, and interval cancers (cancers clinically detected between screenings), and positive predictive value for screen recalls and negative predictive value of each method. Outcomes were analysed in the per-protocol population. Follow-up of the participants for at least 2 years allowed for identification of interval cancers. This trial is registered with ClinicalTrials.gov, number NCT01091545. FINDINGS: Between Jan 27, 2010, and Feb 13, 2015, of 21 691 women invited, 14 851 (68%) agreed to participate. Three women withdrew consent during follow-up and were excluded from the analyses. 139 breast cancers were detected in 137 (<1%) of 14 848 women. Sensitivity was higher for digital breast tomosynthesis than for digital mammography (81·1%, 95% CI 74·2-86·9, vs 60·4%, 52·3-68·0) and specificity was slightly lower for digital breast tomosynthesis than was for digital mammography (97·2%, 95% CI 97·0-97·5, vs 98·1%, 97·9-98·3). The proportion of cancers detected was significantly higher with digital breast tomosynthesis than with digital mammography (8·7 cancers per 1000 women screened, 95% CI 7·3-10·3 vs 6·5 cancers per 1000 screened, 5·2-7·9; p<0·0001). The proportion of women recalled after discussion was higher among cancers detected by digital breast tomosynthesis than for those detected by digital mammography after consensus (3·6%, 95% CI 3·3-3·9 vs 2·5%, 2·2-2·8; p<0·0001). The positive predictive value for screen recalls was 24·1% (95% CI 20·5-28·0) for digital breast tomosynthesis and 25·9% (21·6-30·7) for digital mammography, and the negative predictive value was 99·8% (99·7-99·9) and 99·6% (99·4-99·7), respectively. The proportion of women who developed interval cancers after trial screening was 1·48 cancers per 1000 women screened (95% CI 0·93-2·24). INTERPRETATION: Breast cancer screening by use of one-view digital breast tomosynthesis with a reduced compression force has higher sensitivity at a slightly lower specificity for breast cancer detection compared with two-view digital mammography and has the potential to reduce the radiation dose and screen-reading burden required by two-view digital breast tomosynthesis with two-view digital mammography. FUNDING: The Swedish Cancer Society, The Swedish Research Council, The Breast Cancer Foundation, The Swedish Medical Society, The Crafoord Foundation, The Gunnar Nilsson Cancer Foundation, The Skåne University Hospital Foundation, Governmental funding for clinical research, The South Swedish Health Care Region, The Malmö Hospital Cancer Foundation and The Cancer Foundation at the Department of Oncology, Skåne University Hospital.


Subject(s)
Breast Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Female , Humans , Middle Aged , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Sweden
17.
Acta Radiol ; 59(6): 740-747, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28825319

ABSTRACT

Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose4), and images from the low-dose examinations were reconstructed with both iDose4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.


Subject(s)
Abdomen/diagnostic imaging , Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Adolescent , Child , Child, Preschool , Humans , Infant , Radiation Dosage , Tomography, X-Ray Computed/methods
18.
Acad Radiol ; 25(4): 509-518, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29198945

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to evaluate the correlation of quantitative measurements with visual grading regression (VGR) and receiver operating characteristics (ROC) analysis in computed tomography (CT) images reconstructed with iterative reconstruction. MATERIALS AND METHODS: CT scans on a liver phantom were performed on CT scanners from GE, Philips, and Toshiba at three dose levels. Images were reconstructed with filtered back projection (FBP) and hybrid iterative techniques (ASiR, iDose, and AIDR 3D of different strengths). Images were visually assessed by five readers using a four- and five-grade ordinal scale for liver low contrast lesions and for 10 image quality criteria. The results were analyzed with ROC and VGR. Standard deviation, signal-to-noise ratios, and contrast-to-noise ratios were measured in the images. RESULTS: All data were compared to FBP. The results of the quantitative measurements were improved for all algorithms. ROC analysis showed improved lesion detection with ASiR and AIDR and decreased lesion detection with iDose. VGR found improved noise properties for all algorithms, increased sharpness with iDose and AIDR, and decreased artifacts from the spine with AIDR, whereas iDose increased the artifacts from the spine. The contrast in the spine decreased with ASiR and iDose. CONCLUSIONS: Improved quantitative measurements in images reconstructed with iterative reconstruction compared to FBP are not equivalent to improved diagnostic image accuracy.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed , Algorithms , Artifacts , Humans , Liver/diagnostic imaging , Phantoms, Imaging , ROC Curve , Radiation Dosage , Signal-To-Noise Ratio
19.
Eur Radiol ; 27(8): 3217-3225, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28108837

ABSTRACT

OBJECTIVES: This study aimed to investigate the effects of adding adjunct mechanical imaging to mammography breast screening. We hypothesized that mechanical imaging could detect increased local pressure caused by both malignant and benign breast lesions and that a pressure threshold for malignancy could be established. The impact of this on breast screening was investigated with regard to reductions in recall and biopsy rates. METHODS: 155 women recalled from breast screening were included in the study, which was approved by the regional ethical review board (dnr 2013/620). Mechanical imaging readings were acquired of the symptomatic breast. The relative mean pressure on the suspicious area (RMPA) was defined and a threshold for malignancy was established. RESULTS: Biopsy-proven invasive cancers had a median RMPA of 3.0 (interquartile range (IQR) = 3.7), significantly different from biopsy-proven benign at 1.3 (IQR = 1.0) and non-biopsied cases at 1.0 (IQR = 1.3) (P < 0.001). The lowest RMPA for invasive cancer was 1.4, with 23 biopsy-proven benign and 33 non-biopsied cases being below this limit. Had these women not been recalled, recall rates would have been reduced by 36% and biopsy rates by 32%. CONCLUSIONS: If implemented in a screening situation, this may substantially lower the number of false positives. KEY POINTS: • Mechanical imaging is used as an adjunct to mammography in breast screening. • A threshold pressure can be established for malignant breast cancer. • Recalls and biopsies can be substantially reduced.


Subject(s)
Breast Neoplasms/diagnostic imaging , Elasticity Imaging Techniques/methods , Mammography/methods , Mass Screening/methods , Adult , Aged , Breast Neoplasms/pathology , Early Detection of Cancer/methods , Female , Humans , Mammography/standards , Middle Aged , Pressure , Sensitivity and Specificity , Sensory Thresholds
20.
Acta Radiol ; 58(1): 53-61, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26924832

ABSTRACT

BACKGROUND: The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. PURPOSE: To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. MATERIAL AND METHODS: An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose4) and model-based (IMR) iterative reconstruction methods. RESULTS: iDose4 decreased the noise by 15-45% compared with FBP depending on the level of iDose4. The IMR reduced the noise even further, by 60-75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose4, and the improvement was even greater with IMR. CONCLUSION: There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality.


Subject(s)
Algorithms , Radiation Exposure/analysis , Radiation Exposure/prevention & control , Radiation Protection/methods , Radiographic Image Enhancement/methods , Tomography, X-Ray Computed/methods , Humans , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/instrumentation , Torso/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...