Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Cardiovasc Dev Dis ; 7(2)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545681

ABSTRACT

The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.

2.
J Tissue Eng ; 10: 2041731419841748, 2019.
Article in English | MEDLINE | ID: mdl-31024681

ABSTRACT

The immaturity of human induced pluripotent stem cell derived engineered cardiac tissues limits their ability to regenerate damaged myocardium and to serve as robust in vitro models for human disease and drug toxicity studies. Several chronic biomimetic conditioning protocols, including mechanical stretch, perfusion, and/or electrical stimulation promote engineered cardiac tissue maturation but have significant technical limitations. Non-contacting chronic optical stimulation using heterologously expressed channelrhodopsin light-gated ion channels, termed optogenetics, may be an advantageous alternative to chronic invasive electrical stimulation for engineered cardiac tissue conditioning. We designed proof-of-principle experiments to successfully transfect human induced pluripotent stem cell derived engineered cardiac tissues with a desensitization resistant, chimeric channelrhodopsin protein, and then optically paced engineered cardiac tissues to accelerate maturation. We transfected human induced pluripotent stem cell engineered cardiac tissues using an adeno-associated virus packaged chimeric channelrhodopsin and then verified optically paced by whole cell patch clamp. Engineered cardiac tissues were then chronically optically paced above their intrinsic beat rates in vitro from day 7 to 14. Chronically optically paced resulted in improved engineered cardiac tissue electrophysiological properties and subtle changes in the expression of some cardiac relevant genes, though active force generation and histology were unchanged. These results validate the feasibility of a novel chronically optically paced paradigm to explore non-invasive and scalable optically paced-induced engineered cardiac tissue maturation strategies.

3.
Ultrasound Med Biol ; 45(2): 549-557, 2019 02.
Article in English | MEDLINE | ID: mdl-30527843

ABSTRACT

We developed a protocol to investigate and optimize the application of contrast-enhanced ultrasound (CEUS) to non-invasive diagnosis of progressing fatty liver disease in mouse models. Eighteen 4-wk-old male C57 L/J mice were randomly assigned to one of the three groups and placed on a control diet, high-fat diet or non-alcoholic steatohepatitis diet for the next 10 wk. After 14 wk, B-mode imaging and CEUS imaging using a VisualSonics Vevo2100 system were performed. CEUS imaging and data analysis using three different parameters-peak enhancement, wash-in rate and wash-in perfusion index-revealed a significant decrease in representative blood flow in the high-fat diet group versus controls and a further significant decrease in the non-alcoholic steatohepatitis group (p < 0.001; n = 6/group). In conclusion, compared with B-mode imaging, non-targeted CEUS imaging was more sensitive in diagnosing early-stage fatty infiltration-mediated vascularity changes in liver parenchyma and provided a more accurate steatohepatitis diagnosis in mouse models.


Subject(s)
Contrast Media , Image Enhancement/methods , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Ultrasonography/methods , Animals , Disease Models, Animal , Disease Progression , Liver/diagnostic imaging , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology
4.
Microsc Microanal ; 23(4): 826-842, 2017 08.
Article in English | MEDLINE | ID: mdl-28625174

ABSTRACT

Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.


Subject(s)
Cell Count/methods , Image Processing, Computer-Assisted/methods , Induced Pluripotent Stem Cells/physiology , Microscopy, Confocal/methods , Myocytes, Cardiac/physiology , Tissue Engineering/methods , Automation, Laboratory/methods , Biostatistics/methods , Humans
5.
Sci Rep ; 7: 45641, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368043

ABSTRACT

The current study describes a scalable, porous large-format engineered cardiac tissue (LF-ECT) composed of human induced pluripotent stem cells (hiPSCs) derived multiple lineage cardiac cells with varied 3D geometries and cell densities developed towards the goal of scale-up for large animal pre-clinical studies. We explored multiple 15 × 15 mm ECT geometries using molds with rectangular internal staggered posts (mesh, ME), without posts (plain sheet, PS), or long parallel posts (multiple linear bundles, ML) and a gel matrix containing hiPSC-derived cardiomyocytes, endothelial, and vascular mural cells matured in vitro for 14 days. ME-ECTs displayed the lowest dead cell ratio (p < 0.001) and matured into 0.5 mm diameter myofiber bundles with greater 3D cell alignment and higher active stress than PS-ECTs. Increased initial ECT cell number beyond 6 M per construct resulted in reduced cell survival and lower active stress. The 6M-ME-ECTs implanted onto 1 week post-infarct immune tolerant rat hearts engrafted, displayed evidence for host vascular coupling, and recovered myocardial structure and function with reduced scar area. We generated a larger (30 × 30 mm) ME-ECT to confirm scalability. Thus, large-format ECTs generated from hiPSC-derived cardiac cells may be feasible for large animal preclinical cardiac regeneration paradigms.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Tissue Engineering/methods , Animals , Cell Count , Cell Differentiation , Cell Survival , Humans , Male , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Myocytes, Cardiac/transplantation , Rats, Nude , Regeneration , Transplantation, Heterologous , Ventricular Remodeling
6.
Sci Rep ; 6: 29933, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435115

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation.


Subject(s)
Cell Lineage , Induced Pluripotent Stem Cells/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Regeneration/physiology , Tissue Engineering/methods , Animals , Cell Differentiation , Cell Line , Humans , Induced Pluripotent Stem Cells/transplantation , Myocardium/ultrastructure , Myocytes, Cardiac/ultrastructure , Rats , Recovery of Function
7.
Anal Chem ; 87(4): 2107-13, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25539164

ABSTRACT

Hemodynamic mechanical cues play a critical role in the early development and functional maturation of cardiomyocytes (CM). Therefore, tissue engineering approaches that incorporate immature CM into functional cardiac tissues capable of recovering or replacing damaged cardiac muscle require physiologically relevant environments to provide the appropriate mechanical cues. The goal of this work is to better understand the subcellular responses of immature cardiomyocytes using an in vitro cardiac cell culture model that realistically mimics in vivo mechanical conditions, including cyclical fluid flows, chamber pressures, and tissue strains that could be experienced by implanted cardiac tissues. Cardiomyocytes were cultured in a novel microfluidic cardiac cell culture model (CCCM) to achieve accurate replication of the mechanical cues experienced by ventricular CM. Day 10 chick embryonic ventricular CM (3.5 × 10(4) cell clusters per cell chamber) were cultured for 4 days in the CCCM under cyclic mechanical stimulation (10 mmHg, 8-15% stretch, 2 Hz frequency) and ventricular cells from the same embryo were cultured in a static condition for 4 days as controls. Additionally, ventricular cell suspensions and ventricular tissue from day 16 chick embryo were collected and analyzed for comparison with CCCM cultured CM. The gene expressions and protein synthesis of calcium handling proteins decreased significantly during the isolation process. Mechanical stimulation of the cultured CM using the CCCM resulted in an augmentation of gene expression and protein synthesis of calcium handling proteins compared to the 2D constructs cultured in the static conditions. Further, the CCCM conditioned 2D constructs have a higher beat rate and contractility response to isoproterenol. These results demonstrate that early mechanical stimulation of embryonic cardiac tissue is necessary for tissue proliferation and for protein synthesis of the calcium handling constituents required for tissue contractility. Thus, physiologic mechanical conditioning may be essential for generating functional cardiac patches for replacement of injured cardiac tissue.


Subject(s)
Cell Culture Techniques/instrumentation , Chick Embryo/cytology , Microfluidic Analytical Techniques/instrumentation , Myocytes, Cardiac/cytology , Animals , Cardiotonic Agents/pharmacology , Cells, Cultured , Equipment Design , Gene Expression , Isoproterenol/pharmacology , Mechanical Phenomena , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Biosynthesis
8.
Front Physiol ; 5: 408, 2014.
Article in English | MEDLINE | ID: mdl-25374544

ABSTRACT

Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a "heart" equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.

9.
Dev Dyn ; 243(5): 652-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24868595

ABSTRACT

BACKGROUND: Hypoplastic left heart syndrome (HLHS) is a major human congenital heart defect that results in single ventricle physiology and high mortality. Clinical data indicate that intracardiac blood flow patterns during cardiac morphogenesis are a significant etiology. We used the left atrial ligation (LAL) model in the chick embryo to test the hypothesis that LAL immediately alters intracardiac flow streams and the biomechanical environment, preceding morphologic and structural defects observed in HLHS. RESULTS: Using fluorescent dye injections, we found that intracardiac flow patterns from the right common cardinal vein, right vitelline vein, and left vitelline vein were altered immediately following LAL. Furthermore, we quantified a significant ventral shift of the right common cardinal and right vitelline vein flow streams. We developed an in silico model of LAL, which revealed that wall shear stress was reduced at the left atrioventricular canal and left side of the common ventricle. CONCLUSIONS: Our results demonstrate that intracardiac flow patterns change immediately following LAL, supporting the role of hemodynamics in the progression of HLHS. Sites of reduced WSS revealed by computational modeling are commonly affected in HLHS, suggesting that changes in the biomechanical environment may lead to abnormal growth and remodeling of left heart structures.


Subject(s)
Computer Simulation , Coronary Circulation , Hypoplastic Left Heart Syndrome/embryology , Models, Cardiovascular , Animals , Blood Flow Velocity , Chick Embryo , Disease Models, Animal , Heart Atria/embryology , Heart Atria/pathology , Humans , Hypoplastic Left Heart Syndrome/pathology
10.
Physiol Rep ; 1(5): e00078, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24303162

ABSTRACT

Engineered cardiac tissues (ECTs) are platforms to investigate cardiomyocyte maturation and functional integration, the feasibility of generating tissues for cardiac repair, and as models for pharmacology and toxicology bioassays. ECTs rapidly mature in vitro to acquire the features of functional cardiac muscle and respond to mechanical load with increased proliferation and maturation. ECTs are now being investigated as platforms for in vitro models for human diseases and for pharmacologic screening for drug toxicities. We tested the hypothesis that global ECT gene expression patterns are complex and sensitive to mechanical loading and tyrosine kinase inhibitors similar to the maturing myocardium. We generated ECTs from day 14.5 rat embryo ventricular cells, as previously published, and then conditioned constructs after 5 days in culture for 48 h with mechanical stretch (5%, 0.5 Hz) and/or the p38 MAPK (p38 mitogen-activated protein kinase) inhibitor BIRB796. RNA was isolated from individual ECTs and assayed using a standard Agilent rat 4 × 44k V3 microarray and Pathway Analysis software for transcript expression fold changes and changes in regulatory molecules and networks. Changes in expression were confirmed by quantitative-polymerase chain reaction (q-PCR) for selected regulatory molecules. At the threshold of a 1.5-fold change in expression, stretch altered 1559 transcripts, versus 1411 for BIRB796, and 1846 for stretch plus BIRB796. As anticipated, top pathways altered in response to these stimuli include cellular development, cellular growth and proliferation; tissue development; cell death, cell signaling, and small molecule biochemistry as well as numerous other pathways. Thus, ECTs display a broad spectrum of altered gene expression in response to mechanical load and/or tyrosine kinase inhibition, reflecting a complex regulation of proliferation, differentiation, and architectural alignment of cardiomyocytes and noncardiomyocytes within ECT.

11.
Anal Chem ; 85(18): 8773-9, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23952579

ABSTRACT

A major challenge in cardiac tissue engineering is the delivery of hemodynamic mechanical cues that play a critical role in the early development and maturation of cardiomyocytes. Generation of functional cardiac tissue capable of replacing or augmenting cardiac function therefore requires physiologically relevant environments that can deliver complex mechanical cues for cardiomyocyte functional maturation. The goal of this work is the development and validation of a cardiac cell culture model (CCCM) microenvironment that accurately mimics pressure-volume changes seen in the left ventricle and to use this system to achieve cardiac cell maturation under conditions where mechanical loads such as pressure and stretch are gradually increased from the unloaded state to conditions seen in vivo. The CCCM platform, consisting of a cell culture chamber integrated within a flow loop was created to accomplish culture of 10 day chick embryonic ventricular cardiomyocytes subject to 4 days of stimulation (10 mmHg, ∼13% stretch at a frequency of 2 Hz). Results clearly show that CCCM conditioned cardiomyocytes accelerate cardiomyocyte structural and functional maturation in comparison to static unloaded controls as evidenced by increased proliferation, alignment of actin cytoskeleton, bundle-like sarcomeric α-actinin expression, higher pacing beat rate at lower threshold voltages, and increased shortening. These results confirm the CCCM microenvironment can accelerate immature cardiac cell structural and functional maturation for potential cardiac regenerative applications.


Subject(s)
Cell Culture Techniques/methods , Heart Ventricles/cytology , Myocytes, Cardiac , Tissue Engineering/methods , Animals , Chick Embryo
12.
PLoS One ; 8(3): e60271, 2013.
Article in English | MEDLINE | ID: mdl-23555940

ABSTRACT

Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a temporal window of increased vulnerability to aberrant aortic arch morphogenesis with the potential for profound effects on subsequent cardiovascular morphogenesis.


Subject(s)
Aorta, Thoracic/embryology , Aorta, Thoracic/physiology , Hemodynamics/physiology , Animals , Chick Embryo
13.
J Obstet Gynaecol Res ; 38(12): 1343-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22612345

ABSTRACT

AIMS: Hypoxia is known to influence cardiovascular (CV) function, in part, through adenosine receptor activation. We have shown in a mouse model that during primary cardiac morphogenesis, acute maternal hypoxia negatively affects fetal heart rate, and recurrent maternal caffeine exposure reduces fetal cardiac output (CO) and downregulates fetal adenosine A(2A) receptor gene expression. In the present study, we investigated whether maternal caffeine dosing exacerbates the fetal CV response to acute maternal hypoxia during the primary morphogenesis period. MATERIAL AND METHODS: Gestational-day-11.5 pregnant mice were exposed to hypoxia (45 s duration followed by 10 min of recovery and repeated 3 times) while simultaneously monitoring maternal and fetal CO using high-resolution echocardiography. RESULTS: Following maternal hypoxia exposure, maternal CO transiently decreased and then returned to pre-hypoxia baseline values. In contrast to a uniform maternal cardiac response to each exposure to hypoxia, the fetal CO recovery time to the baseline decreased, and CO rebounded above baseline following the second and third episodes of maternal hypoxia. Maternal caffeine treatment inhibited the fetal CO recovery to maternal hypoxia by lengthening the time to CO recovery and eliminating the CO rebound post-recovery. Selective treatment with an adenosine A(2A) receptor antagonist, but not an adenosine A(1) receptor antagonist, reproduced the altered fetal CO response to maternal hypoxia created by caffeine exposure. CONCLUSIONS: Results suggest an additive negative effect of maternal caffeine on the fetal CV response to acute maternal hypoxia, potentially mediated via adenosine A(2A) receptor inhibition during primary cardiovascular morphogenesis.


Subject(s)
Caffeine/adverse effects , Fetal Heart/drug effects , Hypoxia , Pregnancy Complications , Purinergic P1 Receptor Antagonists/adverse effects , Animals , Female , Heart Rate, Fetal/drug effects , Hemodynamics/drug effects , Male , Mice , Organogenesis , Pregnancy , Stroke Volume/drug effects
14.
Tissue Eng Part A ; 17(5-6): 585-96, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20868205

ABSTRACT

The goal of cellular cardiomyoplasty is to replace damaged myocardium by healthy myocardium achieved by host myocardial regeneration and/or transplantation of donor cardiomyocytes (CMs). In the case of CM transplantation, studies suggest that immature CMs may be the optimal cell type to survive and functionally integrate into damaged myocardium. In the present study, we tested the hypothesis that active proliferation of immature CMs contributes graft survival and functional recovery of recipient myocardium. We constructed engineered cardiac tissue from gestational day 14 rat fetal cardiac cells (EFCT) or day 3 neonatal cardiac cells (ENCT). Culture day 7 EFCTs or ENCTs were implanted onto the postinfarct adult left ventricle (LV). CM proliferation rate of EFCT was significantly higher than that of ENCT at 3 days and 8 weeks after the graft implantation, whereas CM apoptosis rate remained the same in both groups. Echocardiogram showed that ENCT implantation sustained LV contraction, whereas EFCT implantation significantly increased the LV contraction at 8 weeks versus sham group (p < 0.05, analysis of variance). These results suggest that active CM proliferation may play a critical role in immature donor CM survival and the functional recovery of damaged recipient myocardium.


Subject(s)
Fetal Tissue Transplantation , Fetus/cytology , Heart Transplantation , Heart/physiopathology , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Tissue Engineering/methods , Animals , Animals, Newborn , Apoptosis , Cell Proliferation , Female , Graft Survival , Heart Function Tests , Heart Ventricles/diagnostic imaging , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Myocardial Contraction/physiology , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Neovascularization, Physiologic , Rats , Rats, Inbred Lew , Tissue Culture Techniques , Ultrasonography
15.
Tissue Eng Part C Methods ; 16(3): 375-85, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19601695

ABSTRACT

Skeletal muscle-derived stem cells (MDSCs) are able to differentiate into cardiomyocytes (CMs). However, it remains to be investigated whether differentiated CMs contract similar to native CMs. Here, we developed a three-dimensional collagen gel bioreactor (3DGB) that induces a working CM phenotype from MDSCs, and the contractile properties are directly measured as an engineered cardiac tissue. Neonate rat MDSCs were isolated from hind-leg muscles via the preplate technique. Isolated MDSCs were approximately 60% positive to Sca-1 and negative to CD34, CD45, or c-kit antigens. We sorted Sca-1(-) MDSCs and constructed MDSC-3DGBs by mixing MDSCs with acid soluble rat tail collagen type-I and matrix factors. MDSC-3DGB exhibited spontaneous cyclic contraction by culture day 7. MDSC-3DGB expressed cardiac-specific genes and proteins. Histological assessment revealed that cardiac-specific troponin-T and -I expressed in a typical striation pattern and connexin-43 was expressed similar to the native fetal ventricular papillary muscle. beta-Adrenergic stimulation increased MDSC-3DGB spontaneous beat frequency. MDSC-3DGB generated contractile force and intracellular calcium ion transients similar to engineered cardiac tissue from native cardiac cells. Results suggest that MDSC-3DGB induces a working CM phenotype in MDSCs and is a useful 3D culture system to directly assess the contractile properties of differentiated CMs in vitro.


Subject(s)
Bioreactors , Cell Differentiation , Muscle, Skeletal/cytology , Myocardium/cytology , Stem Cells/cytology , Animals , Animals, Newborn , Base Sequence , Blotting, Western , Calcium/metabolism , Cells, Cultured , Collagen , DNA Primers , Electrophoresis, Polyacrylamide Gel , Muscle, Skeletal/metabolism , Myocardium/metabolism , Polymerase Chain Reaction , Rats , Rats, Inbred Lew
16.
Ann Biomed Eng ; 37(6): 1069-81, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19337838

ABSTRACT

Morphogenesis of the "immature symmetric embryonic aortic arches" into the "mature and asymmetric aortic arches" involves a delicate sequence of cell and tissue migration, proliferation, and remodeling within an active biomechanical environment. Both patient-derived and experimental animal model data support a significant role for biomechanical forces during arch development. The objective of the present study is to quantify changes in geometry, blood flow, and shear stress patterns (WSS) during a period of normal arch morphogenesis. Composite three-dimensional (3D) models of the chick embryo aortic arches were generated at the Hamburger-Hamilton (HH) developmental stages HH18 and HH24 using fluorescent dye injection, micro-CT, Doppler velocity recordings, and pulsatile subject-specific computational fluid dynamics (CFD). India ink and fluorescent dyes were injected into the embryonic ventricle or atrium to visualize right or left aortic arch morphologies and flows. 3D morphology of the developing great vessels was obtained from polymeric casting followed by micro-CT scan. Inlet aortic arch flow and cerebral-to-lower body flow split was obtained from 20 MHz pulsed Doppler velocity measurements and literature data. Statistically significant variations of the individual arch diameters along the developmental timeline are reported and correlated with WSS calculations from CFD. CFD simulations quantified pulsatile blood flow distribution from the outflow tract through the aortic arches at stages HH18 and HH24. Flow perfusion to all three arch pairs are correlated with the in vivo observations of common pharyngeal arch defect progression. The complex spatial WSS and velocity distributions in the early embryonic aortic arches shifted between stages HH18 and HH24, consistent with increased flow velocities and altered anatomy. The highest values for WSS were noted at sites of narrowest arch diameters. Altered flow and WSS within individual arches could be simulated using altered distributions of inlet flow streams. Thus, inlet flow stream distributions, 3D aortic sac and aortic arch geometries, and local vascular biologic responses to spatial variations in WSS are all likely to be important in the regulation of arch morphogenesis.


Subject(s)
Aorta, Thoracic/embryology , Aorta, Thoracic/physiology , Models, Cardiovascular , Algorithms , Animals , Aorta, Thoracic/anatomy & histology , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/growth & development , Chick Embryo , Hemodynamics/physiology , Morphogenesis , Radiographic Image Enhancement , Regional Blood Flow , Stress, Mechanical , Tomography, X-Ray Computed , Ventricular Function/physiology
17.
Tissue Eng Part A ; 15(6): 1373-80, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19196150

ABSTRACT

Cardiomyocyte (CM) transplantation is one therapeutic option for cardiac repair. Studies suggest that fetal CMs display the best cell type for cardiac repair, which can finitely proliferate, integrate with injured host myocardium, and restore cardiac function. We have recently developed an engineered early embryonic cardiac tissue (EEECT) using embryonic cardiac cells and have shown that EEECT contractile properties and cellular proliferative response to cyclic mechanical stretch stimulation mimic developing fetal myocardium. However, it remains unknown whether cyclic mechanical stretch-mediated high cellular proliferation activity within EEECT reflects CM or non-CM population. Studies have shown that p38-mitogen-activated protein kinase (p38MAPK) plays an important role in both cyclic mechanical stretch stimulation and cellular proliferation. Therefore, in the present study, we tested the hypothesis that cyclic mechanical stretch (0.5 Hz, 5% strain for 48 h) specifically increases EEECT CM proliferation mediated by p38MAPK activity. Cyclic mechanical stretch increased CM, but not non-CM, proliferation and increased p38MAPK phosphorylation. Treatment of EEECT with the p38MAPK inhibitor, SB202190, reduced CM proliferation. The negative CM proliferation effects of SB202190 were not reversed by concurrent stretch stimulation. Results suggest that immature CM proliferation within EEECT can be positively regulated by mechanical stretch and negatively regulated by p38MAPK inhibition.


Subject(s)
Heart/embryology , Myocardium/cytology , Myocardium/enzymology , Myocytes, Cardiac/cytology , Stress, Mechanical , Tissue Engineering , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Blotting, Western , Cell Proliferation/drug effects , Chickens , Enzyme-Linked Immunosorbent Assay , Histones/metabolism , Imidazoles/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
18.
PLoS One ; 3(7): e2642, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-18612386

ABSTRACT

BACKGROUND: Hypertrophic (HCM) and dilated (DCM) cardiomyopathies result from sarcomeric protein mutations, including cardiac troponin T (cTnT, TNNT2). We determined whether TNNT2 mutations cause cardiomyopathies by altering cTnT function or quantity; whether the severity of DCM is related to the ratio of mutant to wildtype cTnT; whether Ca(2+) desensitization occurs in DCM; and whether absence of cTnT impairs early embryonic cardiogenesis. METHODS AND FINDINGS: We ablated Tnnt2 to produce heterozygous Tnnt2(+/-) mice, and crossbreeding produced homozygous null Tnnt2(-/-) embryos. We also generated transgenic mice overexpressing wildtype (TG(WT)) or DCM mutant (TG(K210Delta)) Tnnt2. Crossbreeding produced mice lacking one allele of Tnnt2, but carrying wildtype (Tnnt2(+/-)/TG(WT)) or mutant (Tnnt2(+/-)/TG(K210Delta)) transgenes. Tnnt2(+/-) mice relative to wildtype had significantly reduced transcript (0.82+/-0.06[SD] vs. 1.00+/-0.12 arbitrary units; p = 0.025), but not protein (1.01+/-0.20 vs. 1.00+/-0.13 arbitrary units; p = 0.44). Tnnt2(+/-) mice had normal hearts (histology, mass, left ventricular end diastolic diameter [LVEDD], fractional shortening [FS]). Moreover, whereas Tnnt2(+/-)/TG(K210Delta) mice had severe DCM, TG(K210Delta) mice had only mild DCM (FS 18+/-4 vs. 29+/-7%; p<0.01). The difference in severity of DCM may be attributable to a greater ratio of mutant to wildtype Tnnt2 transcript in Tnnt2(+/-)/TG(K210Delta) relative to TG(K210Delta) mice (2.42+/-0.08, p = 0.03). Tnnt2(+/-)/TG(K210Delta) muscle showed Ca(2+) desensitization (pCa(50) = 5.34+/-0.08 vs. 5.58+/-0.03 at sarcomere length 1.9 microm, p<0.01), but no difference in maximum force generation. Day 9.5 Tnnt2(-/-) embryos had normally looped hearts, but thin ventricular walls, large pericardial effusions, noncontractile hearts, and severely disorganized sarcomeres. CONCLUSIONS: Absence of one Tnnt2 allele leads to a mild deficit in transcript but not protein, leading to a normal cardiac phenotype. DCM results from abnormal function of a mutant protein, which is associated with myocyte Ca(2+) desensitization. The severity of DCM depends on the ratio of mutant to wildtype Tnnt2 transcript. cTnT is essential for sarcomere formation, but normal embryonic heart looping occurs without contractile activity.


Subject(s)
Cardiomyopathy, Dilated/genetics , Heart/embryology , Troponin T/genetics , Troponin T/physiology , Animals , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Echocardiography , Embryo, Mammalian/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Myocardium/metabolism , Phenotype , Troponin T/metabolism
19.
Am J Physiol Heart Circ Physiol ; 294(5): H2248-56, 2008 May.
Article in English | MEDLINE | ID: mdl-18359892

ABSTRACT

Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.


Subject(s)
Caffeine/toxicity , Cardiovascular System/drug effects , Central Nervous System Stimulants/toxicity , Hemodynamics/drug effects , Maternal Exposure , Adenosine A1 Receptor Antagonists , Adenosine A2 Receptor Antagonists , Animals , Aorta/drug effects , Aorta/embryology , Blood Flow Velocity , Caffeine/administration & dosage , Caffeine/blood , Cardiovascular System/diagnostic imaging , Cardiovascular System/embryology , Cardiovascular System/metabolism , Carotid Arteries/drug effects , Carotid Arteries/embryology , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/blood , Crown-Rump Length , Echocardiography, Doppler, Pulsed , Embryo Loss/chemically induced , Female , Fetal Growth Retardation/chemically induced , Fetal Weight/drug effects , Gestational Age , Injections, Subcutaneous , Mice , Pregnancy , RNA, Messenger/metabolism , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Regional Blood Flow , Ultrasonography, Prenatal/methods , Umbilical Arteries/drug effects , Umbilical Arteries/embryology , Xanthines/pharmacology
20.
J Obstet Gynaecol Res ; 33(2): 114-27, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17441882

ABSTRACT

AIM: We tested the hypothesis that murine embryonic cardiovascular (CV) function is vulnerable to transient changes in maternal transplacental oxygen support during the critical period of CV morphogenesis. METHODS: We measured maternal heart rate (MHR), maternal blood pressure (MBP), and embryonic heart rate (EHR) during mechanical ventilatory support, then induced transient maternal hypoxia daily from gestation day (ED) 10.5 to ED16.5 in pregnant ICR mice. Hypoxia was induced by suspending mechanical ventilation for 30 s or by the replacement of inspired oxygen with nitrogen (75% or 100%) for 30 s while maintaining ventilation. RESULTS: We noted a rapid onset of maternal hypotension in response to hypoxia that quickly recovered following reoxygenation. Following a brief lag time that was not gestation specific, EHR decreased in response to hypoxia. The magnitude of embryo bradycardia and the rate of EHR decline and recovery displayed gestation specific patterns. The magnitude of embryo bradycardia was similar from ED10.5 to ED13.5 and then increased with gestation. Before ED13.5, only 40% of embryos recovered to the baseline EHR following transient maternal hypoxia (vs 80% of embryos after ED 13.5). EHR following recovery exceeded baseline EHR after ED15.5. Nitrogen inhalation (75% or 100%) produced changes in maternal and embryonic hemodynamics similar to suspended ventilation induced hypoxia. CONCLUSIONS: The mammalian embryo is vulnerable to transient decreases in maternal oxygenation during the critical period of organogenesis and the gestational specific EHR response to hypoxia may reflect both increased embryonic oxygen demand and the maturation of neurohumoral heart rate regulation.


Subject(s)
Cardiovascular System/embryology , Embryo, Mammalian/physiology , Hypoxia/physiopathology , Animals , Blood Gas Analysis , Female , Gestational Age , Heart Rate/physiology , Mice , Mice, Inbred ICR , Organogenesis/physiology , Placental Circulation , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...