Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 311(3): F586-99, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27413199

ABSTRACT

Postnatal inhibition or deletion of angiotensin II (ANG II) AT1 receptors impairs renal medullary mircrovascular development through a mechanism that may include vascular endothelial growth factor (VEGF). The present study was designed to test if VEGF/VEGF receptor signaling is necessary for the development of the renal medullary microcirculation. Endothelial cell-specific immunolabeling of kidney sections from rats showed immature vascular bundles at postnatal day (P) 10 with subsequent expansion of bundles until P21. Medullary VEGF protein abundance coincided with vasa recta bundle formation. In human fetal kidney tissue, immature vascular bundles appeared early in the third trimester (GA27-28) and expanded in size until term. Rat pups treated with the VEGF receptor-2 (VEGFR2) inhibitor vandetanib (100 mg·kg(-1)·day(-1)) from P7 to P12 or P10 to P16 displayed growth retardation and proteinuria. Stereological quantification showed a significant reduction in total length (386 ± 13 vs. 219 ± 16 m), surface area, and volume of medullary microvessels. Vascular bundle architecture was unaffected. ANG II-AT1A/1B (-/-) mice kidneys displayed poorly defined vasa recta bundles whereas mice with collecting duct principal cell-specific AT1A deletion displayed no medullary microvascular phenotype. In conclusion, VEGFR2 signaling during postnatal development is necessary for expansion of the renal medullary microcirculation but not structural patterning of the vasa recta bundles, which occurs through an AT1-mediated mechanism.


Subject(s)
Kidney/growth & development , Kidney/metabolism , Microvessels/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Kidney/drug effects , Mice , Mice, Knockout , Microvessels/drug effects , Piperidines/pharmacology , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects
2.
Am J Physiol Renal Physiol ; 307(11): F1215-26, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25339696

ABSTRACT

Both the processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin (AQP)1 directly contributes to the recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and AQP1(+/+) mice were fed a low-salt (LS) diet [0.004% (wt/wt) NaCl] for 7 days and given enalapril [angiotensin-converting enzyme inhibitor (ACEI), 0.1 mg/ml] in drinking water for 3 days. There were no differences in plasma renin concentration at baseline. After LS-ACEI, plasma renin concentrations increased markedly in both genotypes but was significantly lower in AQP1(-/-) mice compared with AQP1(+/+) mice. Tissue renin concentrations were higher in AQP1(-/-) mice, and renin mRNA levels were not different between genotypes. Mean arterial blood pressure was not different at baseline and during LS diet but decreased significantly in both genotypes after the addition of ACEI; the response was faster in AQP1(-/-) mice but then stabilized at a similar level. Renin release after 200 µl blood withdrawal was not different. Isoprenaline-stimulated renin release from isolated perfused kidneys did not differ between genotypes. Cortical tissue norepinephrine concentrations were lower after LS-ACEI compared with baseline with no difference between genotypes. Plasma nitrite/nitrate concentrations were unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared with AQP1(+/+) mice after LS-ACEI. We conclude that AQP1 is not necessary for acutely stimulated renin secretion in vivo and from isolated perfused kidneys, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice.


Subject(s)
Aquaporin 1/metabolism , Kidney/metabolism , Renin/biosynthesis , Renin/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Aquaporin 1/genetics , Blood Pressure/genetics , Blood Pressure/physiology , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Diet, Sodium-Restricted , Female , In Vitro Techniques , Kidney/cytology , Kidney/drug effects , Male , Mice , Mice, Knockout , Nitrates/metabolism , Norepinephrine/metabolism , Pregnancy , Renal Circulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL