Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 19(12): e1011691, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048359

ABSTRACT

The evolution of pesticide resistance is a widespread problem with potentially severe consequences for global food security. We introduce the resevol R package, which simulates individual-based models of pests with evolving genomes that produce complex, polygenic, and covarying traits affecting pest life history and pesticide resistance. Simulations are modelled on a spatially-explicit and highly customisable landscape in which crop and pesticide application and rotation can vary, making the package a highly flexible tool for both general and tactical models of pest management and resistance evolution. We present the key features of the resevol package and demonstrate its use for a simple example simulating pests with two covarying traits. The resevol R package is open source under GNU Public License. All source code and documentation are available on GitHub.


Subject(s)
Pesticides , Pesticides/pharmacology , Pest Control , Drug Resistance , Software
2.
Trends Ecol Evol ; 38(7): 605-614, 2023 07.
Article in English | MEDLINE | ID: mdl-36906434

ABSTRACT

Microbial biopesticides containing living parasites are valuable emerging crop protection technologies against insect pests, but they are vulnerable to resistance evolution. Fortunately, the fitness of alleles that provide resistance, including to parasites used in biopesticides, frequently depends on parasite identity and environmental conditions. This context-specificity suggests a sustainable approach to biopesticide resistance management through landscape diversification. To mitigate resistance risks, we advocate increasing the range of biopesticides available to farmers, whilst simultaneously encouraging other aspects of landscape-wide crop heterogeneity that can generate variable selection on resistance alleles. This approach requires agricultural stakeholders to prioritize diversity as well as efficiency, both within agricultural landscapes and the biocontrol marketplace.


Subject(s)
Agriculture , Biological Control Agents , Animals , Biological Control Agents/pharmacology , Insecta
3.
Front Microbiol ; 12: 650747, 2021.
Article in English | MEDLINE | ID: mdl-33967987

ABSTRACT

Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus, and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed, and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild.

4.
Proc Biol Sci ; 287(1937): 20201638, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33081610

ABSTRACT

The consequences for wildlife of living in radiologically contaminated environments are uncertain. Previous laboratory studies suggest insects are relatively radiation-resistant; however, some field studies from the Chernobyl Exclusion Zone report severe adverse effects at substantially lower radiation dose rates than expected. Here, we present the first laboratory investigation to study how environmentally relevant radiation exposure affects bumblebee life history, assessing the shape of the relationship between radiation exposure and fitness loss. Dose rates comparable to the Chernobyl Exclusion Zone (50-400 µGy h-1) impaired bumblebee reproduction and delayed colony growth but did not affect colony weight or longevity. Our best-fitting model for the effect of radiation dose rate on colony queen production had a strongly nonlinear concave relationship: exposure to only 100 µGy h-1 impaired reproduction by 30-45%, while further dose rate increases caused more modest additional reproductive impairment. Our data indicate that the practice of estimating effects of environmentally relevant low-dose rate exposure by extrapolating from high-dose rates may have considerably underestimated the effects of radiation. If our data can be generalized, they suggest insects suffer significant negative consequences at dose rates previously thought safe; we therefore advocate relevant revisions to the international framework for radiological protection of the environment.


Subject(s)
Bees/radiation effects , Radiation Exposure/analysis , Animals , Animals, Wild , Chernobyl Nuclear Accident , Insecta , Laboratories , Radiation Monitoring , Radiation, Ionizing , Reproduction/radiation effects
5.
Sci Rep ; 7(1): 10417, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874758

ABSTRACT

Animal immune systems change dramatically during the ageing process, often accompanied by major increases in pathogen susceptibility. However, the extent to which senescent elevations in infection mortality are causally driven by deteriorations in canonical systemic immune processes is unclear. We studied Drosophila melanogaster and compared the relative contributions of impaired systemic immune defences and deteriorating barrier defences to increased pathogen susceptibility in aged flies. To assess senescent changes in systemic immune response efficacy we injected one and four-week old flies with the entomopathogenic fungus Beauveria bassiana and studied subsequent mortality; whereas to include the role of barrier defences we infected flies by dusting the cuticle with fungal spores. We show that the processes underlying pathogen defence senescence differ between males and females. Both sexes became more susceptible to infection as they aged. However, we conclude that for males, this was principally due to deterioration in barrier defences, whereas for females systemic immune defence senescence was mainly responsible. We discuss the potential roles of sex-specific selection on the immune system and behavioural variation between males and females in driving these different senescent trends.


Subject(s)
Aging/immunology , Drosophila melanogaster/physiology , Host-Pathogen Interactions/immunology , Immune System/physiology , Immunity , Animals , Female , Male , Sex Factors
6.
Proc Biol Sci ; 283(1845)2016 12 28.
Article in English | MEDLINE | ID: mdl-28003455

ABSTRACT

Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Daphnia/microbiology , Host-Pathogen Interactions , Pasteuria/genetics , Animals , Female , Male , Reproduction, Asexual
7.
PLoS One ; 11(10): e0163307, 2016.
Article in English | MEDLINE | ID: mdl-27741245

ABSTRACT

According to Bergmann's rule we expect species with larger body size to inhabit locations with a cooler climate, where they may be well adapted to conserve heat and resist starvation. This rule is generally applied to endotherms. In contrast, body size in ectothermic invertebrates has been suggested to follow the reverse ecogeographic trend: these converse Bergmann's patterns may be driven by the ecological constraints of shorter season length and lower food availability in cooler high latitude locations. Such patterns are particularly common in large insects due to their longer development times. As large and facultatively endothermic insects, bumblebees could thus be expected to follow either trend. In this investigation, we studied body size of three bumblebee species over a large spatial area and investigated whether interspecific trends in body size correspond to differences in their distribution consistent with either Bergmann's or a converse Bergmann's rule. We examined the body size of queens, males and workers of the Bombus lucorum complex of cryptic bumblebee species from across the whole of Great Britain. We found interspecific differences in body size corresponding to Bergmann's rule: queens and males of the more northerly distributed, cool-adapted, species were largest. In contrast, the mean body size of the worker caste did not vary between the three species. These differences in body size may have evolved under selection pressures for thermoregulation or starvation resistance. We suggest that this case study in facultatively endothermic insects may help clarify the selection pressures governing Bergmann rule trends more generally.


Subject(s)
Bees/physiology , Body Size/physiology , Animals , Climate , Ecosystem , Female , Male , Models, Biological , Seasons , Temperature
8.
Parasitology ; 143(14): 1902-1916, 2016 12.
Article in English | MEDLINE | ID: mdl-27576454

ABSTRACT

For parasitic platyhelminths that generally lack a fossil record, there is little information on the pathways of morphological change during evolution. Polystomatid monogeneans are notable for their evolutionary diversification, having originated from ancestors on fish and radiated in parallel with tetrapod vertebrates over more than 425 million years (My). This study focuses on the genus Polystomoides that occurs almost worldwide on freshwater chelonian reptiles. Morphometric data show a major divergence in structural adaptations for attachment; this correlates with a dichotomy in micro-environmental conditions in habitats within the hosts. Species infecting the urinary tract have attachment organs with large hamuli and small suckers; species in the oro-nasal tract differ fundamentally, having small hamuli and large suckers. Zoogeographical and molecular evidence supports ancient separation of these site-specific clades: a new genus is proposed - Uropolystomoides - containing urinary tract species distinct from Polystomoides sensu stricto in oro-nasal sites. Aside from differences in attachment adaptations, body plans have probably changed little over perhaps 150 My. This case contrasts markedly with polystomatids in other vertebrate groups where major morphological changes have evolved over much shorter timescales; the chelonian parasites show highly stable morphology across their global distribution over a long period of evolution, exemplifying 'living fossils'.


Subject(s)
Adaptation, Physiological , Biological Evolution , Host-Parasite Interactions , Trematoda/genetics , Trematoda/physiology , Acclimatization , Animals , Ecosystem , Environment , Fishes/parasitology , Fossils , Phylogeny , Trematoda/anatomy & histology , Turtles/parasitology
9.
Ecol Evol ; 6(5): 1328-39, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26848386

ABSTRACT

Competition theory states that multiple species should not be able to occupy the same niche indefinitely. Morphologically, similar species are expected to be ecologically alike and exhibit little niche differentiation, which makes it difficult to explain the co-occurrence of cryptic species. Here, we investigated interspecific niche differentiation within a complex of cryptic bumblebee species that co-occur extensively in the United Kingdom. We compared the interspecific variation along different niche dimensions, to determine how they partition a niche to avoid competitive exclusion. We studied the species B. cryptarum, B. lucorum, and B. magnus at a single location in the northwest of Scotland throughout the flight season. Using mitochondrial DNA for species identification, we investigated differences in phenology, response to weather variables and forage use. We also estimated niche region and niche overlap between different castes of the three species. Our results show varying levels of niche partitioning between the bumblebee species along three niche dimensions. The species had contrasting phenologies: The phenology of B. magnus was delayed relative to the other two species, while B. cryptarum had a relatively extended phenology, with workers and males more common than B. lucorum early and late in the season. We found divergent thermal specialisation: In contrast to B. cryptarum and B. magnus, B. lucorum worker activity was skewed toward warmer, sunnier conditions, leading to interspecific temporal variation. Furthermore, the three species differentially exploited the available forage plants: In particular, unlike the other two species, B. magnus fed predominantly on species of heather. The results suggest that ecological divergence in different niche dimensions and spatio-temporal heterogeneity in the environment may contribute to the persistence of cryptic species in sympatry. Furthermore, our study suggests that cryptic species provide distinct and unique ecosystem services, demonstrating that morphological similarity does not necessarily equate to ecological equivalence.

10.
Biol Invasions ; 17(11): 3183-3195, 2015.
Article in English | MEDLINE | ID: mdl-26430383

ABSTRACT

Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers <500 in each population. In 2010, only a single individual was captured at each locality and further searching failed to record any others in repeated sampling up to 2014. We conclude that both populations are now extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

12.
Biol Conserv ; 184: 380-388, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25843959

ABSTRACT

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is notorious amongst current conservation biology challenges, responsible for mass mortality and extinction of amphibian species. World trade in amphibians is implicated in global dissemination. Exports of South African Xenopus laevis have led to establishment of this invasive species on four continents. Bd naturally infects this host in Africa and now occurs in several introduced populations. However, no previous studies have investigated transfer of infection into co-occurring native amphibian faunas. A survey of 27 U.K. institutions maintaining X. laevis for research showed that most laboratories have low-level infection, a risk for native species if animals are released into the wild. RT-PCR assays showed Bd in two introduced U.K. populations of X. laevis, in Wales and Lincolnshire. Laboratory and field studies demonstrated that infection levels increase with stress, especially low temperature. In the U.K., native amphibians may be exposed to intense transmission in spring when they enter ponds to spawn alongside X. laevis that have cold-elevated Bd infections. Exposure to cross-infection has probably been recurrent since the introduction of X. laevis, >20 years in Lincolnshire and 50 years in Wales. These sites provide an important test for assessing the impact of X. laevis on Bd spread. However, RT-PCR assays on 174 native amphibians (Bufo, Rana, Lissotriton and Triturus spp.), sympatric with the Bd-infected introduced populations, showed no foci of self-sustaining Bd transmission associated with X. laevis. The abundance of these native amphibians suggested no significant negative population-level effect after the decades of co-occurrence.

13.
Exp Gerontol ; 61: 47-53, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25446985

ABSTRACT

Mosquitoes are one of the most important vectors of human disease. The ability of mosquitoes to transmit disease is dependent on the age structure of the population, as mosquitoes must survive long enough for the parasites to complete their development and infect another human. Age could have additional effects due to mortality rates and vector competence changing as mosquitoes senesce, but these are comparatively poorly understood. We have investigated these factors using the mosquito Aedes aegypti and the filarial nematode Brugia malayi. Rather than observing any effects of immune senescence, we found that older mosquitoes were more resistant, but this only occurred if they had previously been maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in vector competence, meaning that the number of parasites remained relatively unchanged as mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp spike in mortality after an infected blood meal ("refeeding syndrome") and few survived long enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. Our results indicate that old mosquitoes may be inefficient vectors due to low vector competence and high mortality, but that frequent blood meals can prevent these effects of age.


Subject(s)
Aedes/parasitology , Filarioidea/growth & development , Insect Vectors/parasitology , Age Factors , Animals , Female , Fructose/administration & dosage
14.
Int J Parasitol ; 42(10): 931-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22906507

ABSTRACT

Long-term records of parasite infection are rare for individuals in wild host populations. This study, on an introduced population of Xenopus laevis in Wales, demonstrates powerful control by acquired immunity of the monogenean, Protopolystoma xenopodis. Field evidence was based on a 10 year dataset for 619 individually-marked hosts screened at each capture for patent (egg-producing) infection. The adult parasite population occurred predominantly in juvenile hosts. Invasion began rapidly 'post-birth' (in early tadpoles). Longitudinal records for animals aged ≥15 years showed that, after loss of this primary infection, most hosts had strong resistance to re-infection. For ca. 80% of the population, no infections were recorded during adult life; for ca. 15%, there were isolated brief episodes of patent infection; for ca. 5%, parasites persisted as repeated short-term or chronic long-term infections. Acquired immunity was confirmed by laboratory challenge infection of wild-caught X. laevis: in 30/32 exposures, no parasites survived to maturity; in the two infected, development was retarded. Parasite persistence depends principally on host recruitment generating naïve young (as in human measles). In some hosts, retarded parasite development delays reproduction for several years: these infections show 'Typhoid Mary' characteristics, persisting in 'latent' form with potential to initiate epidemics in naïve cohorts.


Subject(s)
Adaptive Immunity , Trematoda/physiology , Trematode Infections/veterinary , Xenopus laevis/parasitology , Animals , Female , Male , Time Factors , Trematoda/immunology , Trematode Infections/epidemiology , Trematode Infections/immunology , Wales/epidemiology , Xenopus laevis/immunology
15.
Exp Gerontol ; 46(11): 853-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21798332

ABSTRACT

Immune system effectiveness generally declines as animals age, compromising disease resistance. In Drosophila, expression of a variety of immune-related genes elevates during ageing; however how this is linked to increasing pathogen susceptibility in older flies has remained unclear. We investigated whether changes in the Drosophila cellular immune response might contribute to immunosenescence. Experiments studied fly cohorts of different ages and compared the numbers and activity of the circulating haemocytes involved in pathogen defence. In female wildtype Samarkand and Oregon R flies the haemocyte population fell by 31.8% and 10.2% respectively during the first four weeks of adulthood. Interestingly we detected no such decline in male flies. The impact of ageing on the phagocytic activity of haemocytes was investigated by injecting flies with fluorescently labelled microbes or latex beads and assessing the ability of haemocytes to engulf them. For all immune challenges the proportion of actively phagocytosing haemocytes decreased as flies aged. Whilst 24.3%±1.15% of haemocytes in one-week-old flies phagocytosed Escherichia coli bacteria or Beauveria bassiana fungal spores, this decreased to 16.7%±0.99% in four-week-old flies. This clear senescence of the Drosophila cellular immune response may underpin increased disease susceptibility in older flies.


Subject(s)
Cellular Senescence/immunology , Disease Resistance/immunology , Disease Susceptibility/immunology , Drosophila melanogaster , Hemocytes/immunology , Immunity, Cellular/immunology , Phagocytosis/immunology , Animals , Beauveria , Cellular Senescence/physiology , Drosophila melanogaster/immunology , Escherichia coli , Female , Male
16.
Proc Biol Sci ; 278(1709): 1195-202, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-20926436

ABSTRACT

Inbreeding and a consequent loss of genetic diversity threaten small, isolated populations. One mechanism by which genetically impoverished populations may become extinct is through decreased immunocompetence and higher susceptibility to parasites. Here, we investigate the relationship between immunity and inbreeding in bumblebees, using Hebridean island populations of Bombus muscorum. We sampled nine populations and recorded parasite prevalence and measured two aspects of immunity: the encapsulation response and levels of phenoloxidase (PO). We found that prevalence of the gut parasite Crithidia bombi was higher in populations with lower genetic diversity. Neither measure of immune activity was correlated with genetic diversity. However, levels of PO declined with age and were also negatively correlated with parasite abundance. Our results suggest that as insect populations lose heterozygosity, the impact of parasitism will increase, pushing threatened populations closer to extinction.


Subject(s)
Bees/parasitology , Inbreeding , Acari/physiology , Animals , Apicomplexa/isolation & purification , Apicomplexa/physiology , Bees/genetics , Bees/immunology , Crithidia/isolation & purification , Crithidia/physiology , Genetic Variation , Immunity, Innate/genetics , Monophenol Monooxygenase/metabolism , Nosema/isolation & purification , Nosema/physiology , Population Dynamics
17.
BMC Evol Biol ; 9: 152, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19573223

ABSTRACT

BACKGROUND: Inbreeding and the loss of genetic diversity are known to be significant threats to small, isolated populations. Hymenoptera represent a special case regarding the impact of inbreeding. Haplodiploidy may permit purging of deleterious recessive alleles in haploid males, meaning inbreeding depression is reduced relative to diploid species. In contrast, the impact of inbreeding may be exacerbated in Hymenopteran species that have a single-locus complementary sex determination system, due to the production of sterile or inviable diploid males. We investigated the costs of brother-sister mating in the bumblebee Bombus terrestris. We compared inbred colonies that produced diploid males and inbred colonies that did not produce diploid males with outbred colonies. Mating, hibernation and colony founding took place in the laboratory. Once colonies had produced 15 offspring they were placed in the field and left to forage under natural conditions. RESULTS: The diploid male colonies had a significantly reduced fitness compared to regular inbred and outbred colonies; they had slower growth rates in the laboratory, survived for a shorter time period under field conditions and produced significantly fewer offspring overall. No differences in success were found between non-diploid male inbred colonies and outbred colonies. CONCLUSION: Our data illustrate that inbreeding exacts a considerable cost in Bombus terrestris through the production of diploid males. We suggest that diploid males may act as indicators of the genetic health of populations, and that their detection could be used as an informative tool in hymenopteran conservation. We conclude that whilst haplodiploids may suffer less inbreeding depression than diploid species, they are still highly vulnerable to population fragmentation and reduced genetic diversity due to the extreme costs imposed by the production of diploid males.


Subject(s)
Bees/genetics , Inbreeding , Animals , Bees/physiology , Diploidy , Female , Fertility/genetics , Genetic Variation , Genetics, Population , Longevity/genetics , Male , Reproduction
18.
BMC Evol Biol ; 7: 238, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18047670

ABSTRACT

BACKGROUND: Arthropods are infected by a wide diversity of maternally transmitted microbes. Some of these manipulate host reproduction to facilitate population invasion and persistence. Such parasites transmit vertically on an ecological timescale, but rare horizontal transmission events have permitted colonisation of new species. Here we report the first systematic investigation into the influence of the phylogenetic distance between arthropod species on the potential for reproductive parasite interspecific transfer. RESULTS: We employed a well characterised reproductive parasite, a coccinellid beetle male-killer, and artificially injected the bacterium into a series of novel species. Genetic distances between native and novel hosts were ascertained by sequencing sections of the 16S and 12S mitochondrial rDNA genes. The bacterium colonised host tissues and transmitted vertically in all cases tested. However, whilst transmission efficiency was perfect within the native genus, this was reduced following some transfers of greater phylogenetic distance. The bacterium's ability to distort offspring sex ratios in novel hosts was negatively correlated with the genetic distance of transfers. Male-killing occurred with full penetrance following within-genus transfers; but whilst sex ratio distortion generally occurred, it was incomplete in more distantly related species. CONCLUSION: This study indicates that the natural interspecific transmission of reproductive parasites might be constrained by their ability to tolerate the physiology or genetics of novel hosts. Our data suggest that horizontal transfers are more likely between closely related species. Successful bacterial transfer across large phylogenetic distances may require rapid adaptive evolution in the new species. This finding has applied relevance regarding selection of suitable bacteria to manipulate insect pest and vector populations by symbiont gene-drive systems.


Subject(s)
Coleoptera/microbiology , Host-Pathogen Interactions , Spiroplasma/physiology , Animals , Coleoptera/physiology , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , Female , Male , Phylogeny , Sex Factors , Sex Ratio , Species Specificity
19.
Biol Lett ; 3(6): 678-81, 2007 Dec 22.
Article in English | MEDLINE | ID: mdl-17878145

ABSTRACT

Vertically transmitted bacterial symbionts are common in arthropods. However, estimates of their incidence and diversity are based on studies that test for a single bacterial genus and often only include small samples of each host species. Focussing on ladybird beetles, we collected large samples from 21 species and tested them for four different bacterial symbionts. Over half the species were infected, and there were often multiple symbionts in the same population. In most cases, more females than males were infected, suggesting that the symbionts may be sex ratio distorters. Many of these infections would have been missed in previous studies as they only infect a small proportion of the population. Furthermore, 11 out of the 17 symbionts discovered by us were either in the genus Rickettsia or Spiroplasma, which are rarely sampled. Our results suggest that the true incidence and diversity of bacterial symbionts in insects may be far greater than previously thought.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Coleoptera/microbiology , Symbiosis , Animals , Bacteria/classification , Female , Flavobacterium/classification , Flavobacterium/isolation & purification , Male , Rickettsia/classification , Rickettsia/isolation & purification , Sex Factors , Sex Ratio , Spiroplasma/classification , Spiroplasma/isolation & purification , Wolbachia/classification , Wolbachia/isolation & purification
20.
Genetics ; 171(3): 1115-24, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16079227

ABSTRACT

Sex-ratio-distorting microbes are common parasites of arthropods. Although the reasons they have invaded and spread though populations are well understood, their subsequent dynamics within those populations are virtually unknown. We have found that different strains of a male-killing Rickettsia bacterium infecting the beetle Adalia bipunctata are associated with distinct mitochondrial haplotypes, which is expected as both the mitochondria and the bacteria are maternally transmitted. These mitochondrial haplotypes shared a common ancestor >2 million years ago, and their overall diversity is significantly greater than expected under neutrality from comparisons with a nuclear gene. Furthermore, a variety of statistical tests show strong deviations from neutrality in mitochondrial but not in nuclear genes. We therefore conclude that natural selection is probably maintaining a polymorphism of different Rickettsia strains in this species. Despite the age of the different mitochondrial haplotypes, there is very little genetic diversity within them. Furthermore, there is considerable variation in mitochondrial haplotype and bacterial strain frequency between populations, despite it being thought that this species has fairly low levels of population structure. We conclude that the fitness of these male killers may be negatively frequency dependent or different strains may be favored in different populations. These hypotheses await experimental confirmation.


Subject(s)
Coleoptera/genetics , Coleoptera/microbiology , Mitochondria/genetics , Polymorphism, Genetic , Rickettsia/genetics , Sex Ratio , Animals , DNA, Mitochondrial , Female , Genetic Variation , Haplotypes , Linkage Disequilibrium , Male , Molecular Sequence Data , Rickettsia Infections/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...