Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 147: 16-35, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29454492

ABSTRACT

Ballast water discharges may cause negative impacts to aquatic ecosystems, human health and economic activities by the introduction of potentially harmful species. Fifty untreated ballast water tanks, ten in each port, were sampled in four Adriatic Italian ports and one Slovenian port. Salinity, temperature and fluorescence were measured on board. Faecal indicator bacteria (FIB), phyto- and zooplankton were qualitatively and quantitatively determined to identify the species assemblage arriving in ballast water. FIB exceeded the convention standard limits in 12% of the sampled tanks. Vibrio cholerae was not detected. The number of viable organisms in the size groups (minimum dimension) <50 and ≥10 µm and ≥50 µm resulted above the abundances required from the Ballast Water Management Convention in 55 and 86% of the samples, respectively. This is not surprising as unmanaged ballast waters were sampled. Some potentially toxic and non-indigenous species were observed in both phyto- and zooplankton assemblages.


Subject(s)
Phytoplankton , Ships , Zooplankton , Animals , Aquatic Organisms , Bacteria , Ecosystem , Feces/microbiology , Introduced Species , Mediterranean Sea , Phytoplankton/classification , Salinity , Surveys and Questionnaires , Temperature , Water/chemistry , Water Microbiology , Zooplankton/classification
2.
Environ Microbiol ; 17(10): 3581-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-24903068

ABSTRACT

The potential link between the microbial dynamics and the environmental parameters was investigated in a semi-enclosed and highly dynamic coastal system (Gulf of Trieste, northern Adriatic Sea, NE Mediterranean Sea). Our comprehensive 2-year time-series study showed that despite the shallowness of this area, there was a significant difference between the surface and the bottom bacterial community structure. The bottom bacterial community was more diverse than the surface one and influenced by sediment re-suspension. The surface seawater temperature had a profound effect on bacterial productivity, while the bacterial community structure was more affected by freshwater-borne nutrients and phytoplankton blooms. Phytoplankton blooms caused an increase of Gammaproteobacteria (Alteromonadaceae, SAR86 and Vibrionaceae) and shift in dominance from SAR11 to Rhodobacteraceae taxon at the surface. Our results propose the importance of the water mass movements as drivers of freshwater-borne nutrients and of allochthonous microbial taxa. This study emphasizes the prediction power based on association networks analyses that are fed with long-term measurements of microbial and environmental parameters. These interaction maps offer valuable insights into the response of marine ecosystem to climate- and anthropogenic-driven stressors.


Subject(s)
Geologic Sediments/microbiology , Microbial Consortia/physiology , Phytoplankton/metabolism , Seawater/microbiology , Alphaproteobacteria/growth & development , Climate , Gammaproteobacteria/growth & development , Mediterranean Sea , Molecular Sequence Data , North Sea , Phytoplankton/microbiology , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/growth & development , Temperature , Water Movements
3.
Sci Total Environ ; 470-471: 1173-83, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24246940

ABSTRACT

The coastal northern Adriatic Sea receives pulsed inputs of riverine nutrients, causing phytoplankton blooms and seasonally sustained dissolved organic carbon (DOC) accumulation-hypothesized to cause episodes of massive mucilage. The underlying mechanisms regulating P and C cycles and their coupling are unclear. Extensive biogeochemical parameters, processes and community composition were measured in a 64-day mesocosms deployed off Piran, Slovenia. We followed the temporal trends of C and P fluxes in P-enriched (P+) and unenriched (P-) mesocosms. An intense diatom bloom developed then crashed; however, substantial primary production was maintained throughout, supported by tightly coupled P regeneration by bacteria and phytoplankton. Results provide novel insights on post-bloom C and P dynamics and mechanisms. 1) Post-bloom DOC accumulation to 186 µM remained elevated despite high bacterial carbon demand. Presumably, a large part of DOC accumulated due to the bacterial ectohydrolytic processing of primary productivity that adventitiously generated slow-to-degrade DOC; 2) bacteria heavily colonized post-bloom diatom aggregates, rendering them microscale hotspots of P regeneration due to locally intense bacterial ectohydrolase activities; 3) Pi turnover was rapid thus suggesting high P flux through the DOP pool (dissolved organic phosphorus) turnover; 4) Alpha- and Gamma-proteobacteria dominated the bacterial communities despite great differences of C and P pools and fluxes in both mesocosms. However, minor taxa showed dramatic changes in community compositions. Major OTUs were presumably generalists adapted to diverse productivity regimes.We suggest that variation in bacterial ectohydrolase activities on aggregates, regulating the rates of POM→DOM transition as well as dissolved polymer hydrolysis, could become a bottleneck in P regeneration. This could be another regulatory step, in addition to APase, in the microbial regulation of P cycle and the coupling between C and P cycles.


Subject(s)
Carbon/metabolism , Ecological and Environmental Phenomena , Phosphorus/metabolism , Seawater/microbiology , Water Microbiology , Carbon/analysis , Carbon Cycle , Phosphorus/analysis , Seawater/chemistry , Slovenia
SELECTION OF CITATIONS
SEARCH DETAIL