Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 20(16): 1097-104, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11269961

ABSTRACT

Greenhouse-cultured, container-grown seedlings of Aleppo pine (Pinus halepensis Mill.), radiata pine (Pinus radiata D. Don), and interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) were cold acclimated and deacclimated in growth chambers over 24 weeks. Needle and root cold hardiness and root growth potential (RGP) were measured weekly. Root, needle and stem analyses for soluble sugars and starch were performed biweekly. In all tissues, there was a close correspondence between cold hardiness and the absolute concentration of soluble sugars, as well as between the increase and decrease in concentration of soluble sugars during cold hardening and dehardening, respectively, supporting the theory that soluble sugars function as cryoprotectants in plant tissues. The magnitude of starch concentration did not parallel the magnitude of the cold hardiness attained, and changes in starch concentration were related to production and consumption factors, rather than timing of changes in cold hardiness. The rise and fall of RGP paralleled the rise and fall of total carbohydrate concentration in roots. The behavior of the three species was surprisingly similar, considering the different climates to which they are adapted.


Subject(s)
Carbohydrates/analysis , Plant Roots/growth & development , Trees/growth & development , Cold Climate , Freezing , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Roots/physiology , Plant Stems/chemistry , Starch/analysis , Trees/physiology
2.
Tree Physiol ; 16(9): 795-9, 1996 Sep.
Article in English | MEDLINE | ID: mdl-14871687

ABSTRACT

Container-grown quiescent Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) seedlings were air dried to plant water potentials of -0.2, -2.2 or -3.8 MPa (unstressed, moderate, and severe stress treatments, respectively). Trees from each treatment were either placed in root mist chambers held at 10, 20, or 28 degrees C for 28 days and root growth potential (RGP) and plant water potential (PWP) measured weekly, or potted in a 1/1 mix of peat and vermiculite, watered only once, and height growth and survival recorded after 10 weeks in an unheated greenhouse. Root growth potential of unstressed trees was greater than that of moderately stressed trees at all temperatures. Root growth potential of severely stressed trees was zero. Predawn plant water potentials of unstressed and moderately stressed trees were initially high, fell to -0.5 to -0.8 MPa, and then increased. Predawn plant water potential of severely stressed trees declined continuously over the 28-day experiment. Survival and height growth of the severely stressed trees were reduced compared to the unstressed and moderately stressed trees. Among the root growth potential measurements, RGP measured after 7 days at 10 degrees C was most sensitive to drought stress history and revealed differences in vigor that were not apparent from the survival and height growth data.

3.
Tree Physiol ; 6(4): 351-69, 1990 Dec.
Article in English | MEDLINE | ID: mdl-14972928

ABSTRACT

Greenhouse-cultured, container-grown ponderosa pine (Pinus ponderosa var. scopulorum Engelm.), interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco), and Engelmann spruce (Picea engelmannii (Parry) Engelm.) were cold acclimated and deacclimated in growth chambers over 19 weeks. Cold hardiness was measured weekly by a whole-plant freeze test and by two quick tissue tests: freeze-induced electrolyte leakage of needles, and differential thermal analysis of buds. The whole-plant freeze test provided results in 7 days, and indicated differences in cold hardiness among stems, buds, and needles. Although the whole-plant freeze test could accurately measure cold hardiness, it was not precise, and it required destructive sampling. Results from freeze-induced electrolyte leakage and differential thermal analysis were available in 2 days and 1 hour, respectively. The freeze-induced electrolyte leakage test was a precise, sensitive and objective predictor of changes or differences in tissue cold hardiness. To determine actual cold hardiness, results could be calibrated to the response of the same tissue in the whole-plant freeze test. The speed and objectivity of differential thermal analysis made this test useful for rapid, general assessment of cold hardiness status, but calibration was difficult, and precision varied.

4.
Tree Physiol ; 5(3): 291-306, 1989 Sep.
Article in English | MEDLINE | ID: mdl-14972975

ABSTRACT

Greenhouse-cultured, container-grown ponderosa pine (Pinus ponderosa var. scopulorum Engelm.), interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and Engelmann spruce (Picea engelmannii (Parry) Engelm.) were cold acclimated and deacclimated in growth chambers over 19 weeks. Stem cold hardiness, total new root length at 14 days and days to bud break were measured weekly. Relationships among cold hardiness, root growth potential (RGP) and bud dormancy suggest that cold hardiness, which can be measured quickly, could provide a useful basis for estimating the two other parameters. During cold acclimation, there was a lag period in which stem cold hardiness remained at -15 degrees C and RGP was at a minimum, in all three species. Douglas-fir and Engelmann spruce buds remained fully dormant during this lag period. Ponderosa pine buds had no chilling requirement for the loss of dormancy, and reached quiescence during the lag period. Immediately following the lag period, as stem cold hardiness progressed to -22 degrees C, RGP increased to a high plateau in all three species, and Douglas-fir and Engelmann spruce buds approached quiescence. Cold deacclimation and bud development began immediately on exposure to warm, long days, but RGP remained high until stem cold hardiness returned to approximately -15 degrees C. At bud break, cold hardiness and RGP were at the minimum.

SELECTION OF CITATIONS
SEARCH DETAIL
...