Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 11(7): 701-14, 2000.
Article in English | MEDLINE | ID: mdl-11011768

ABSTRACT

It is believed that the interactions between the biological environment and biomaterial surface are the key factors influencing its biocompatibility. Therefore, plasma processing, which can vary the surface properties without altering the bulk properties, has been considered as one of the important techniques for improving a materials' biocompatibility. In this investigation, plasma-induced grafting polymerization of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE), instead of direct plasma polymerization, was attempted with an aim to improve the substrate blood compatibility. Contact angle measurement indicated both fluorocarbon-grafted Pdyethylenes (PEs) are hydrophobic. Due to the additional fluorine and chlorine atoms on the CTFE chain, the PCTFE-grafted PE exhibited a higher hydrophobicity than the PVDF-grafted one. ESCA analysis has revealed that these two plasma-induced fluorocarbon deposits contain almost no CFx (x > 2) binding on the surface layer, indicating the grafting polymerization mainly follows the free radical mechanism instead of the molecule-highly-fragmented reaction steps commonly seen in the direct plasma polymerization treatment. In addition, ATR-FTIR has shown the surface chemical configuration of these PVDF- and PCTFE-grafted PEs to be very similar to those of the bulk samples of PVDF and PCTFE. The surface roughness decreased after oxygen plasma treatment and was further reduced by VDF and CTFE grafting polymerization. In vitro platelet adhesion testing indicated these two fluorocarbon grafted PEs are less platelet-activating than the nontreated PE control and oxygen plasma activated one.


Subject(s)
Biocompatible Materials/pharmacology , Chlorofluorocarbons/blood , Platelet Adhesiveness/physiology , Vinyl Compounds/blood , Biocompatible Materials/pharmacokinetics , Chlorofluorocarbons/chemistry , Chlorofluorocarbons/pharmacology , Humans , Microscopy, Electron, Scanning , Platelet Adhesiveness/drug effects , Polymers , Spectroscopy, Fourier Transform Infrared , Surface Properties , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL